Analyzing the optimal orientation of single-and dual-axis tracking PV systems

Y. Blom, O. Chatzilampos, M. R. Vogt, O. Isabella, R. Santbergen

8th of Nov 2023 PVPMC, Mendrisio

Motivation

Incoming irradiance should be maximized

Solar tracking can help

Which orientation is optimal?

Motivation

Different methods described in literature

- Astronomical tracking^[1]/ true tracking^[2]
- Diffuse radiation method^[3]
- Analytic equations^[4,5]

Based on assumption of diffuse irradiance is isotropic/azimuth independent

• In absence of direct irradiance, flat orientation is preferred

[1] R. Singh, et al., *Renewable and Sustainable Energy Reviews.* 82, 3263-3278 (2018)
[2] Sandia National Laboratories, *pvlib: Single-axis tracking*, (accessed on 29-10-2023)
[3] J. Antonanzas, et al., *Solar Energy*, 163, 122-130 (2018)
[4] K. R. McIntosh, et al., *IEEE Journal of Photovoltaics*, 12 (1), 397-405 (2022)
[5] C. D. Rodriquez-Gallegos, et al., *IEEE Journal of Photovoltaics*, 10 (5), 1474-1480 (2020)

Motivation

- Diffuse irradiance should be treated anisotropic^[1]
- Perez model^[2]
- Irradiance map
 - Delft, July 7th, 15:00
 - DHI = 400 W/m²
 - DNL = 600 W/m²

[1] D. H. W. Li, G. H. W. Cheung, *Applied Energy*, **81** (2), 170-186 (2005)
 [2] R. Perez, et al., *Solar Energy*, **50** (3), 235-245 (1993)

Objectives

Modeling framework

- PVMD Toolbox^[1]
- Rec Irraddiance = Irradiance map x Sensitivity map^[2]

^[1] M. R. Vogt, et al., *Sol. Energy Mater*, **247**, 111944 (2022)
[2] R. Santbergen, et al., *Solar Energy*, **150**, 49-54 (2017)

Sensitivity map

 $Sens = \frac{Irr_{abs}}{Irr_{vert}}$

Modeling framework

- PVMD Toolbox^[1]
- Rec Irraddiance = Irradiance map x Sensitivity map^[2]

ŤUDelft 8

[1] M. R. Vogt, et al., *Sol. Energy Mater*, **247**, 111944 (2022)
[2] R. Santbergen, et al., *Solar Energy*, **150**, 49-54 (2017)

Assumptions

- Field of 5 by 25 modules
- Backward raytracing^[1] (two generations)

9.5 m

• Albedo = 20% (Lambertian)

V

1.5 m

[1] A. Calcabrini, et al., Progress in Photovoltaics, **31**, 134 (2023)

Assumptions

- Field of 5 by 25 modules
- Backward raytracing^[1] (two generations)
- Albedo = 20% (Lambertian)

ŤUDelft 10

[1] A. Calcabrini, et al., Progress in Photovoltaics, **31**, 134 (2023)

Assumptions

- Field of 5 by 25 modules
- Backward raytracing^[1] (two generations)
- Albedo = 20% (Lambertian)

TUDelft 11

[1] A. Calcabrini, et al., Progress in Photovoltaics, **31**, 134 (2023)

Assumptions

- Stand-alone module
- View factor approach
- Albedo = 20% (specular)

Sensitivity map

Assumptions

- Stand-alone module
- View factor approach
- Albedo = 20% (specular)

Sensitivity map

TUDelft 13

Assumptions

- Stand-alone module
- View factor approach
- Albedo = 20% (specular)

Sensitivity map

TUDelft 14

Assumptions

- Stand-alone module
- View factor approach
- Albedo = 20% (specular)

Sensitivity map

Objectives

Optimal position

Input parameters

- Position sun: Delft, July 7th
- Irradiance

Varying parameters

- Maximum value GHI (*GHI*_{max})
- Fraction of direct component (fr_{DNI})

$$GHI = DHI + DNI \cdot \sin(\alpha_s)$$
$$fr_{DNI} = \frac{DNI \cdot \sin(\alpha_s)}{GHI}$$

TUDelft 17

Optimal position 1-axis

ŤUDelft 18

Optimal position 2-axis

Objectives

Simple equation

- Simple equation to avoid complex modeling
- Realistic input conditions
- RMSE of $\phi_{eq} \phi_{sim}$

TUDelft 21

Simple equations 1-axis

Simple equations 1-axis

Simple equations 2-axis

• Goal: $Az_{eq} = f(Az_{sun}, GHI, fr_{DNI}) \phi_{eq} = f(\phi_{sun}, GHI, fr_{DNI})$

Simple equations 2-axis

• Goal:
$$Az_{eq} = f(Az_{sun}, GHI, fr_{DNI}) \phi_{eq} = f(\phi_{sun}, GHI, fr_{DNI})$$

• **Propose:** $Az_{eq} = Az_{sun}$

$$\phi_{eq} = \left(1 - e^{-c \cdot f r_{DNI} \cdot GHI}\right) \phi_{sun}$$

$c [(W/m^2)^{-1}]$	0.075
RMSE* _{astro} [°]	$4.5 \cdot 10^{-3}$
RMSE* _{new} [°]	$4.0 \cdot 10^{-3}$

*weighted with GHI

Conclusion

Modeling framework 1-axis and 2-axis

- Optimal position for different weather conditions
- Equations to predict optimal orientation

1 axis $\phi_{eq} = C_1 \left(\frac{2}{1 + e^{-C_2 \cdot \phi_{sun}}} - 1 \right)$

2 axis $Az_{eq} = Az_{sun}$ $\phi_{eq} = (1 - e^{-c \cdot fr \cdot Irr}) \cdot \phi_{sun}$

TUDelft 26

Thank you for your attention!

International PV Systems Summer School series: www.tudelft.nl/pvsss

Different climates

