

Modelling and Validating Heat Transfer Effects in Floating PV Installations

Monica Nicola, Dr. Ing. Matthew Berwind, Dr. Ing. Stefan Wieland, Konstantin Ilgen

Monica Nicola 2023 European PVPMC Workshop 8th of November 2023 Mendrisio, Switzerland www.ise.fraunhofer.de

Motivation

Motivation

Module Temperature Effect on Electrical Behavior

Research Goals

Further thermal analysis based on previous work and consideration of evaporation effects.

Rapid implantable model validated with multiple FPV datasets.

Analytical Approach Multi-layer Model

- Conduction: module (front and back sides) and mounting structure to the water.
- □ Radiation: module's front side and the sky, & between the module's back and the water.
- □ Convection: calculating heat transfer coefficients for the front and back sides of the module.
- Evaporative Cooling: Backside cooling through water evaporation using psychrometric analysis.

Analytical Approach Water Evaporation Effect

Analytical Approach Adapted Model

- □ To make the analysis **computationally feasible**.
- □ Several assumptions.
- □ Implemented in python & the Newton-Raphson method applied to solve the energy balance equation.

Analytical Approach Initial Results for adapted model

- Model outputs FPV module temperature time series at 15 minute intervals.
- □ The inclusion of the **effect of water evaporation** can result in a better estimation of the module temperature.
- **C**alculated time series **overestimates module temperature**.
- □ Further enhancements are planned through integrating with the general lake model (Ilgen, Konstantin, et al. , 2023).

Time interval from 08.08.2022 to 11.08.2022

Model	MAE	R-Squared
Implemented Model	5.97	0.38
Implemented Model + Evaporative cooling assumption	5.2	0.51

Data Driven Approach FPV training and testing data sets

© Fraunhofer ISE

Fraunhofer

Data Driven Approach Data Cleaning & Adjustments

Example of Adjustments:

Wind speed data at **10m** above the ground is recalibrated to **2m** using a logarithmic wind profile.

$$v_2 = v_1 \frac{ln(\frac{h_2}{z_o})}{ln(\frac{h_1}{z_o})}$$
 [1]

Roughness class	Roughness length z_0	Types of terrain surfaces
0	0.0002 m	Water surfaces: sea and lakes
0.5	0.0024 m	Open terrain with a smooth surface
1	0.03 m	Open agricultural land without fences and hedges
1.5-2.5	0.055-0.2 m	Agricultural land varies depending on the amount of houses, hedges bushes, and plants.

[1] J. D. Holmes, Wind loading of structures. CRC press, 2018

Data Driven Approach Data Filters

Data Driven Approach Literature Models

Faiman	integrated in the IEC 61853 standard.	$T_{mod} = T_{amb} + \left(\frac{G_T}{U_0 + U_1 \cdot Ws}\right)$
Zenit	developed by Fraunhofer ISE.	$T_{mod} = T_{amb} + T_s \ \frac{G_T}{1000 \ (\frac{W}{m^2})}$
Sandia	commonly used model.	$T_{mod} = T_{amb} + G_T \cdot e^{a + b \cdot Ws}$
Risser & Fuentes	linear regression model with empirical coefficients fitted to measured data.	$T_{mod} = 3.81 + 1.31 T_{amb} + 0.0282 G_T - 1.65 \text{ Ws}$

Input Timeseries

Variable	Source
Irradiance	On-site measured 5 minutes values Global Tilted Irradiation(GTI)
Module Temperature	On-site measured 5 minutes values
Ambient Temperature	On-site measured 5 minutes values
Wind Speed	Satellite data corrected to 2 m height [m/s]

Parameter Fitting Approach

Data Driven Approach - Result Impact of Parameter Fitting Method on All Models

Zenit[®]:
$$T_{mod} = T_{amb} + T_s \frac{G_T}{1000 (\frac{W}{m^2})}$$

 $T_s = 23 \text{ °C} ----17.6 \text{ °C}$

Given Sandia / King's : $T_{mod} = T_{amb} + G_T \cdot e^{a + b \cdot Ws}$

a = (-3.56) - - - - (-3.71) $b = (-0.075 \ s/m) - - - - (-0.148 \ s/m)$

Data Driven Approach Impact of Parameter Fitting Method on Faiman Models

$$T_{mod} = T_{amb} + \left(\frac{G_T}{U_0 + U_1 \cdot Ws}\right) = U_0: \text{ Combined heat loss factor coefficient. Default = 25 - 37.33 (W/ °C m2)} = U_1: \text{ Combined heat loss factor influenced by wind. Default = 6.84 - 8.49 (W/ °C s m3)}$$

Time interval from 07.08.2022 to 09.08.2022

Conclusion

Analytical Model

 Initial results output module temperature and are being further improved through FPV4resilience project.

Data-Driven

- Model for FPV yield simulation implemented in Zenit.
- Tuned model parameters show better predictability.

Outlook

- Monitor micro-climate variables through FPV4resilience project.
- Improve evaporation rate predictions.
- Application & testing to additional FPV plants.

16 © Fraunhofer IS

FPV4Resilience

SERENDIPV PV2Float

Contact

4

Monica Nicola monica.nicola@ise.fraunhofer.de

