

A new thermal model for ground and offshore PV installations

Lukas Dvonc, Artur Skoczek Solargis, Slovakia

© 2023 Solargis

Agenda

- Impact of temperature on PV modules
- Motivation for a new temperature model
- Approach to solution
- Model structure
- Preliminary results and verification
- Proposed next steps

Impact of temperature on PV modules

	Environmental effect
1	Global tilt irradiance G [W/m ²]
2	Temperature T [°C]
3	Albedo [-]
4	Pollution, Dust

Effects on PV panel

- Open circuit voltage V_{OC} is decreased
- Output DC power and P_{MP} is decreased
- Short circuit current I_{SC} is increased

Models for temperature efficiency μ

- Huld's model simplified King's model (King et al., 2004)
- Explicit linear models $\mu = \mu_{ref} (1 \beta_{ref} (T T_{ref}) + \gamma \ln(I))$

Why new temperature model

SAPM, PVsyst, Faiman and SAM-NOCT

Based on stationary heat balance equation

 $q_{GTI} - q_{electric} - q_{covection} - q_{coduction} - q_{radiation} = 0$

- Solution in case of all 4 models is straightforward and explicit formula for module temperature => low calculation costs
- Models are based on a coefficients with constant values for calculated system (even in case of trackers)
- Basic inputs come from fit of ground measured data
- Does not reflect heat capacity of PV modules

Transient weight moving average model (Prilliman et al., 2020)

• Previous module temperature is considered via moving average

New temperature model approach

- Work package in SERENDI-PV project Floating simulation improvements
- Heat transfer is a more general issue than PV industry covers
- Approach motivated by (Choi et al., 2021)

CAE models

Basic model structure

- As simple as the solution of heat balance • equation (time dependent)
- Explicit or straightforward calculation • except the *h* value.
- h convective heat transfer coefficient
- Involves differences between laminar and • turbulent flow
- Depends on material properties of air •
- Semi empirical method for *h*. •

 $C \frac{dT_{module}}{dt} = P_{in} - P_{electr} - P_{convect} - P_{rad}$ $P_{in} = A * G * \mu [W]$ – Power to module surface $P_{electr} = U * I [W] - \text{Outflow DC power}$ $P_{convect} = A * \mathbf{h} * (T_{mod} - T_{air}) [W] - (Frank P. Incropera, 2007)$ $P_{rad} = F * A * \varepsilon * \sigma * \left(T_{mod}^4 - T_{sky}^4\right) [W] - \text{(Driesse et al., 2022)}$ $A[m^2]$ – Panel surface => separate for top and bottom site

SOLARGIS

Material properties of humid air

(Tsilingiris, 2018)

- Floating panel does not "see" the water below mounting, but interacts with ambient air via air properties (specific heat, density, viscosity, temperature conductivity)
- Rate of convective heat transfer strongly depends on fluid properties
- Remarkable change in humid air properties starts at T ~40 °C
- Ambiguous shape of curves for elevated humidity
- Relative humidity close to water level: RH > 80%

h calculation

Characteristic number	Simple description	Formula	
Reynolds number (Re)	inertial force viscous force	$Re = \frac{\rho. v. L}{\mu}$	
Prandtl number (Pr)	momentum diffusivity thermal diffusivity	$Pr = \frac{c_p \mu}{k}$	(Frank P. Incropera, 2007; Hideaki Imura, 1972)
Grashof number (Gr) (vertical surface)	bouyancy force viscous force	$Gr = \frac{g.\beta.\rho^2 (T_{panel} - T_{air})L^3}{\mu^2}$	
	•	•	

Semiempirical, non intuitive, complex, but still in use

$$h_{forced} = f(Pr, Re)$$

$$h_{free} = f(Pr, Gr)$$

$$h = \sqrt[3]{h_{free}^3 + h_{forced}^3}$$

SOLARGIS © 2023 Solargis • European PVPMC Workshop 8-9 November 2023 Mendrisio, Switzerland

f(*Pr*, *Re*) differs for:laminar/turbulent flow

f(*Pr*, *Gr*) differs for:

- laminar/turbulent air flow
- surface orientation top/bottom
- panel hotter/cooler than ambient air

Model comparison with site-measured data

- Validation and tuning on ground measured data (Not allowed to present)
- First verification on floating PV measurements
 - Site (Western Europe)
 - Fixed tilt
 - Water dam
 - 5-min time resolution (only several days available)

Selected environmental conditions

Model validation with site-measured data

SOLARCIS © 2023 Solargis • European PVPMC Workshop 8-9 November 2023 Mendrisio, Switzerland

11

Comparison with Solargis temperature model

Country	Lat., Lon. [°]	Panel tilt [°]	Climate
Slovakia	49.258, 19.968	39	Continental, No dry season, Warm summer
Kenya	0.000, 37.210	4	Temperate, Dry and Warm summer
South Africa	-33.095, 19.038	29	Temperate, Dry and Warm summer

- Solargis time series 15-min resolution, year 2022
- Monofacial, ground mounted, fixed-tilt installation, OPTA calculated using Solargis tools
- Installed power = 300 kW
- Relative row spacing 2.5 m
- Modified NOCT temperature model is used as standard in Solargis calculation

Comparison with Solargis temperature model

Country	RMSE [°C]	Bias [°C]
Slovakia	24.1	-2.0
Kenya	11.4	-5.2
South Africa	9.2	-5.2

SOLARGIS © 2023 Solargis • European PVPMC Workshop 8-9 November 2023 Mendrisio, Switzerland

Comparison with Solargis PV simulation

Country	RMSE [%]	Bias [%]
Slovakia	3.5	-0.8
Kenya	3.2	-1.6
South Africa	3.5	-0.8

SOLARGIS © 2023 Solargis • European PVPMC Workshop 8-9 November 2023 Mendrisio, Switzerland

Conclusions and further work

- New approach to the modeling of panel temperature was introduced
- The first but not the last step has been done
- Preliminary results with promising model accuracy
- Suggested solutions for open issues (radiation, model speed up,...)
- Besides site measurements, the FEM, FVM software is going to be involved as verification tool