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Impact of temperature on PV modules

Environmental effect

Global tilt irradiance G [W/m?]

Temperature T [°C]

Albedo [-]

PrlW[IN|PF

Pollution, Dust

Effects on PV panel

Open circuit voltage Vo is decreased
Output DC power and Pyp is decreased

Short circuit current Igc is increased

Models for temperature efficiency [t

- Explicit linear models u = pyer (1 = Bref (T — Trep) + v In(D))

Huld’s model — simplified King’s model (King et al., 2004)
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Why new temperature model

SAPM, PVsyst, Faiman and SAM-NOCT

+ Based on stationary heat balance equation

qeTI — Yelectric — Qcovection — Qcoduction — Qradiation = 0

« Solution in case of all 4 models is straightforward and explicit
formula for module temperature => low calculation costs
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* Basic inputs come from fit of ground measured data

« Does not reflect heat capacity of PV modules
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Transient weight moving average model (Prilliman et al., 2020)
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* Previous module temperature is considered via moving average
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New temperature model approach

Work package in SERENDI-PV project — Floating simulation improvements

Heat transfer is a more general issue than PV industry covers

Approach motivated by (Choi et al., 2021)

High

racy

NOCT 1stversion
* Actual panel Temp

4 N

Models based on
measured data

(currently used)
* General tool
» Usable accuracy

(Re, Gr, Pr,...)

» Partially validated

J
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Thermal physics included
Solve heat transfer tasks

Validates in wide range of
cases in industry
Time dependent

J

lation requirements

CAE models
(FEM,CFD,..)

(Characteristic equations\

and numbers

High

N

Improved physical
models (automotive,
aviation design,..)

Diff. equation solvers
Spatial distribution
Benchmarking

Current state of the art




Basic model structure

« Assimple as the solution of heat balance

equation (time dependent) AT modul
. . i C %: Pin = Petectr — Peonvect — Prada
«  Explicit or straightforward calculation
except the h value. Py, = A G » u [W] — Power to module surface
h - convective heat transfer coefficient Porectr = U * 1 [W] = Outflow DC power

« Involves differences between laminar and | P.pnpect = A * h * (Ty0q — Tair) [W] — (Frank P. Incropera, 2007)

turbulent flow Py =FxAxegxox (Trfwd — Ts4ky) [W]— (Driesseetal., 2022)

* Depends on material properties of air A [m2] — Panel surface => separate for top and bottom site

+Semiempirical method for h. N

\J
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p [kg/m3]

Material properties of humid air
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(Tsilingiris, 2018)

Floating panel does not “see” the water below mounting, but interacts with
ambient air via air properties (specific heat, density, viscosity, temperature
conductivity)

Rate of convective heat transfer strongly depends on fluid properties
Remarkable change in humid air properties starts at T ~40 °C

Ambiguous shape of curves for elevated humidity

Relative humidity close to water level: RH > 80%
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h calculation

IS0 80000-11:2019(E)

Characteristic number | Simple description Formula
Reynolds number (Re) inertial force - p.v.L
viscous force u
. . C (Frank P. Incropera, 2007;
Prandtl number (Pr) momentum dlfoSlUlty Pr = p_‘u Hideaki Imura, 1972)
thermal dif fusivity k
Grashof number (Gr) bouyancy force

(vertical surface)

viscous force

Gr

_ g-ﬁ-pz(’rpanel - Tair)L3

Semiempirical, non intuitive, complex,

but still in use

hforced = f(PT', Re)
hfree = f(Pr,Gr)

— 33 3
h = \/hfree + hforced

LARGIS |
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f (Pr, Re) differs for:

I

laminar/turbulent flow }

f (Pr, Gr) differs for:

laminar/turbulent air flow
surface orientation top/bottom
panel hotter/cooler than ambient air




Model flow

* Model setting
* length, width

Temperature
wind speed Load environmental data for timestamp
Global tilt irradiance @

Relative humidity

Find humid air properties (y, p, k, ¢,)

«  Emissivity for top and bottom face

« Specific heat per area (IEC 61215-1:2021) 2%

(Syafigah et al., 2017)

Glass: 61.75 %

EVALl: 13.77 %

Tedlar: 2.06 %

EVA2: 13.77 %

PVcell: 8.66 %

Obtain convective heat transfer coefficient

U

Calculate input and output power terms

U

Solve differential heat balance equation
Tpanel(t) = Tpanel(t + At)

U

Panel temperature in next timestamp
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Model comparison with site-measured data

« Validation and tuning on ground measured data (Not allowed to present)

* First verification on floating PV measurements Selected environmental conditions
« Site (Western Europe) 100 -
. Fixed tilt £ 75 \ vV \! N\ \{ AY
- Water dam * s0- |

« 5-min time resolution (only several days available)
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2020)
 Global tilt irradiance

» Relative humidity

GTI [W/m2]

Inputs
« Temperature -
« Wind speed (ERA-5) (Hersbach et al.,

day in October 2022
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Model validation with site-measured data
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Comparison with Solargis temperature model

Country Lat., Lon. [°] Panel tilt [°] Climate

Slovakia 49.258, 19.968 39 Continental, No dry season,
Warm summer

Kenya 0.000, 37.210 4 Temperate, Dry and Warm
summer

South Africa -33.095,19.038 29 Temperate, Dry and Warm

summer

« Solargis time series 15-min resolution, year 2022

« Monofacial, ground mounted, fixed-tilt installation, OPTA calculated using Solargis tools

« Installed power = 300 kW

* Relative row spacing 2.5 m

* Modified NOCT temperature model is used as standard in Solargis calculation
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Comparison with Solargis temperature model

New model [C]

[
o

(=}

Slovakia

w B
o o

N
o

Kenya South Africa
70 80
1
10! 60 10 701
2 2
2 50 2 60
2 @ 40 ) o
g ‘g 5 E a0
30 2.
% 20 % 20
(-4 -4
10 1 101
. : : 10° (i} ; : : : : : 10° 0+ ; :
40 50 60 70 10 20 30 40 50 60 70 0 20 40
Solargis [C] Solargis [C] Solargis [C]
Country RMSE [°C] Bias [°C]
Slovakia 24.1 -2.0
Kenya 11.4 -5.2
South Africa 9.2 -5.2
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Comparison with Solargis PV simulation

Slovakia 300 Kenya South Africa
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Country RMSE [%] Bias [%]
Slovakia 3.5 -0.8
Kenya 3.2 -1.6
South Africa 3.5 -0.8

TGE) © 2023 Solargis + European PVPMC Workshop 8-9 November 2023 Mendrisio, Switzerland 14

Relative points density



Conclusions and further work

* New approach to the modeling of panel temperature was introduced
* The first but not the last step has been done

* Preliminary results with promising model accuracy

* Suggested solutions for open issues (radiation, model speed up,...)

+ Besides site measurements, the FEM, FVM software is going to be involved as verification tool
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