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Sky Images on Solar Irradiance Forecasting

Ground-based sky imagery: High-
frequency data with high spatia
resolution.

Advances in deep learning solutions:
« Demonstrated success in sub-hourly
forecasting.
* Rapid prediction capabilities,
essential for real-time applications.
Challenges:
» Deep learning methods with poor
interpretability

= Site-specific models due to unique
climate and micro-climate conditions.

= Significant investment in time and
resources for local data collection




Current Deep Learning Prediction Methods and Challenges
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Traditional Approach
(Result level fusion)
* Image and numerical data
processed separately

+ Combined output generation
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Modality Interactions

Modality Interactions

v

Combined Result

Weak Modular Interaction Model
(Late feature-level fusion)
Image and numerical data
processed separately
Joint feeding into a weak

interaction model

Combined output generation
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Proposed Strong Modular Interaction Model

(Early feature-level fusion)
Linear projection of pictures and values
Parallel element feeding into a strong
interaction model
Results deduced from inter-element
relationships



Deep Learning Innovations in Solar Forecasting

Original dataset
from CA, Folsom

« Utilisation of advanced ViT-E
model for deep learning
forecasting.

» Patches(Pixel)-meteorological

data relationship. Attention on numerical,

Top to bottom:
¢ Irradiance
¢ Environmental variables
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focus on different elements
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Decline 1n relevance
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between image data
and meteorological
data is weakening as
the prediction scale is
extended.

Original

2 min

The model gradually
degenerates into a £
numerical model
focusing on
meteorological data.
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Comparative Model Performance Over Forecast Horizons
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Forecast skill for irradiance.

*At the 2-minute forecast interval, distinct performance variations are evident among different
models: early fusion exhibits a more pronounced balance.

*As the forecast horizon extends, the differences between models diminish, indicating a
convergence (homogenization) in performance.



Future work
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Future Explorations: ./

*Transferability under different e
CI i m ate types Research Accelerati}mand Jen onstratifn l?g»i{fjinc p '\'

*Transferability under similar
microclimate types

Climate type transferability in
urban/non-urban settings

Interconnectivity between
multiple sites




Transportability of priori knowledge

*A priori model knowledge is
transferable, despite differences
in meteorological and
geographic data.

eInitial result:
*Model training time reduced
by 90% using migration
methods.

*Migrated model achieves fit
with only 2 weeks of data,
compared to 12-18 weeks
for non-migrated models.

Folsom Data Site

US, Folsom Data Set
(Comprehensive)

Well-trained Irradiance
Forecast Models

Transfer

Nottingham Data Site

a )
UK, Nottingham Data Set
(Limited)
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