The Importance of Terrain-Shading

The Case of Oahu

Kyle Seymour 1 Marc Perez, Ph.D.¹ Upama Nakarmi, Ph.D.¹ Phil Gruenhagen ¹ Richard Perez, Ph.D.²

¹Clean Power Research ² SUNY Albany

Shadow horizons in PV system design

Horizon information constitutes a series of angles made by the horizon as a function of azimuth

Calculating shadow horizons with a fish-eye lens

How to get it conventionally?

 Fisheye lens takes a photo and horizon is drawn by hand or using image classification techniques

• The information is used pre-construction to assess yield impacts

How do simulation models use horizon information?

Radiation is anisotropic: $E_{POA} = E_b + E_g + E_d$

If the sun is behind the horizon at time t, E_b is cut entirely, as is $E_{d,CS}$ and sometimes a portion of $E_{d,HB}$ and $E_{d,iso}$: E_g is a function of G & albedo

NASA SRTM & ASTER: Free high-res DTM data

Stereophotogrammetry: closer to DSM

InSAR: Interferometric synthetic aperture radar

Castries, St. Lucia, derived from Digital Globe polar orbiting Satellite

Castries, St. Lucia

Castries, St. Lucia

Castries, St. Lucia

Derivation of Horizons Globally from ASTER at 1 arc second

Case Study for calculating such horizons and assessing their impacts

OAHU @ 1 arc-second resolution

We use simple trig to calculate horizons in 1° azimuthal angle increments

DSM P_2 : $X_2 = 1$, $Y_1 = 3$, $H_1 = 1$

$$\begin{aligned} a &= sin^2(\Delta \phi/2) + cos \ \phi_1 \cdot cos \ \phi_2 \cdot sin^2(\Delta \lambda/2) \\ c &= 2 \cdot atan2(\ \sqrt{a}, \ \sqrt{(1-a)}\) \end{aligned}$$

$$d = R \cdot c$$

$$P_1: X_1 = 8, Y_1 = 8, H_1 = 10$$

UTM: Universe Transverse Mercator projection

 $\Delta X = \Delta Y$ Cell size is uniform in m

 $d = haversine(P_1,$ P_2)

نصيرالدين طوسى Nasīr al-Dīn Tūsī Discoverer of the law of tangents c. ~1230, Persia

16M horizon angles when looking due North

Northeast

East

Southeast

South

Southwest

West

Northwest

North

Average Horizon Angle in all directions

How do horizons impact irradiance TS?

Raw Data @ 500m / 5min from SolarAnywhere

How do horizons impact irradiance TS?

Raw Data @ 500m / 5min from SolarAnywhere

Take an extreme horizon just beneath a cliff on the eastern side of Hawaii

Jan 01

May 31

May 31

POAI Latitude Tilt from SolarAnywhere

Zoom out to the whole island

POAI Latitude Tilt from SolarAnywhere + shading

Shading-introduced Bias (SA - SAshadow)/SA

Let's zoom in to a particularly topographical section

Let's zoom in to a particularly topographical section

Derived Horizon Angles

POAI Latitude Tilt from SolarAnywhere

POAI Latitude Tilt from SolarAnywhere + shading

Shading-introduced Bias (SA - SAshadow)/SA

Conclusions

- Yield losses from terrain obstructions average 3% across Oahu
 - Significant spatial variations where yield loss can exceed 70%
- Shading should be properly accounted for in diffuse irradiance to account for its anisotropic nature

Far-horizon Shading Now Available in SolarAnywhere®

- New hi-res terrain observation capability derived from ASTER is available in SolarAnywhere, globally
 - New algorithms yield 1-degree az-resolution horizons with a 20km max view distance in 1.5s: calculation on the fly based on API request
- Easily integrable with, and complementary to, roof potential assessment tools with SolarAnywhere

Interested in learning more?

Visit:

solaranywhere.com

Try SolarAnywhere Public free of charge by registering for an account:

data.solaranywhere.com

Thank You

Kyle Seymour | Data Scientist

