IFE

09.11.2023

Impact of albedo variations and sensor positions on rear irradiance for bifacial power plants

PVPMC Modelling Workshop, Mendrisio 2023

Marie Syre Wiig, Magnus Moe Nygaard and Erik S. Marstein

ÅPENT

Bifacial PR

$$PR'_{STC} = \frac{P_{out}G_{ref}}{P_0G_i(1 + \gamma(T_{mod} - T_{25^oC}))}$$
$$G_i = G_{POA,front} + \varphi \ G_{POA,rear}$$

- ISO 61724-1
 - Measure albedo, GHI (and DHI) + optical model.
 - View factor or ray tracing
 - Measure rear in-plane irradiance,
 - Broadband or spectrally matched
 - No specification of rear side sensor positions

Bifacial PV plant

Rear side pyranometers

#4 | **|FE**

Model irradiance at sensor position – Average albedo

- Desert
- Non-seasonal, albedo
- Input GHI and DHI
- Measured tracker angles

Building a detailed shading scene in bifacial radiance

#6 | **|FE**

Modeling the pyranometer positions

Albedo variations

#8 | **| |FE**

Spectral impact on effective albedo

#9 | **|FE**

Spectral impact on effective albedo

- SMM intermediate of WiteSand and DarkSand from SMARTS
- SMM 1-1.03

Local variations in albedo

- SMM intermediate of WiteSand and DarkSand from SMARTS
- SMM 1-1.03
- The local albedo below the rear sensors varies from 29-41%.

#11 | **| | | | | | | | | | | |**

Modeling the pyranometer positions

Modeled irradiance across module cord

- # 13 | **| | | | | | | | | | |**
- The rear irradiance varies a lot from cell to cell and is strongly influenced by the rear side shading pattern.

Removing the shading elements

14 | **| | | | | | | | | | | |**

Shading factor, yearly simulation

$$f_{shading} = \frac{\frac{1}{N} \sum_{n=1}^{N} G_{rear,shaded}}{\frac{1}{N} \sum_{n=1}^{N} G_{rear,unshaded}}$$

$$SF = (1 - f_{shading})$$

0.15 0.15 0.10 0.05 0.00 No shading Torque tube Torque tube + frame + rails Full model + rails

15 | **| | | | | | | | | | |**

Summary

- Low spectral impact
 - POA from Pyranometer and reference cell are equivalent
- Local albedo has a strong impact on individual sensor measurements
- G_{POA,rear} is very sensitive to the sensor position.

- # 16 | |**|FE**
- No sensor position will at all times give a good estimate for the average rear irradiance, hence bifacial PR will have higher noise levels compared to monofacial PR.

- Modeled rear irradiance requires a detailed model of the structures causing rear side shading.
- More efficient tools are required for online monitoring

Thank you for your attention

Marie.syre.wii@ife.no