KU LEUVEN

Dynamic thermal models with the Filter-EWM-MBE (FEM) correction approach

...or linear regressions everywhere

Bert Herteleer 2023 European PVPMC Workshop, Mendrisio

Making equation-based models reliably dynamic

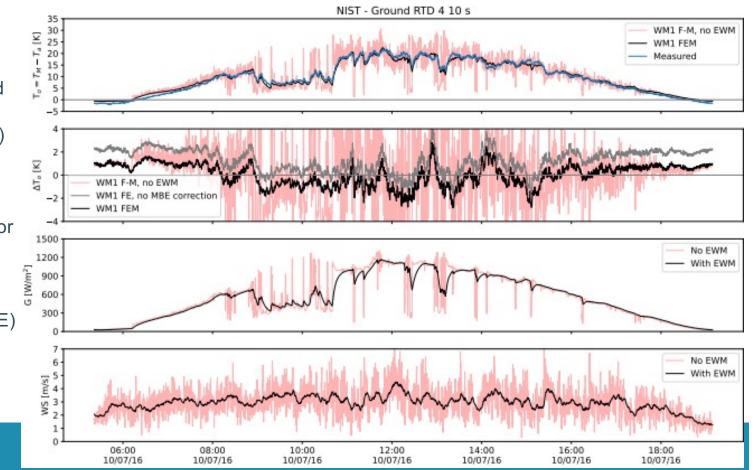
- After irradiance, temperature estimation is the most important factor
- Thermal models were (implicitly) steady-state ⇒ better RMSE, MAE, MBE for dynamic models
- Previous methods for dynamic models laborious or physics-intensive, e.g. Lobera et al, 2013: <u>10.1016/j.solener.2013.03.028</u>
- First step-change: Prilliman et al "Transient Weighted Moving-Average Model of Photovoltaic Module Back-Surface Temperature", IEEE J PV, 2020 & pvlib implementation
 - Requires Finite Element Analysis (FEA) ⇒ labour intensive
 - Still too much physics!

Our solution: what if you can find what you need from measured data? \Rightarrow Investigating methods to improve photovoltaic thermal models at minute-to-second timescales, Solar Energy, 2023

- Inspired by <u>Armstrong & Hurley</u> (A thermal model for photovoltaic panels under varying atmospheric conditions, Applied Thermal Engineering 2010) + <u>PhD</u> (2016) ⇒ Find τ from data
- Process for reliable coefficients: filters, linear regressions, corrections
- Tested on 15 sites, 24 datasets, from 1 s to 1 h

FEM in practice

- **Filter** step gives "ideal" coefficients.
 - •2 linear regressions instead of 1
 - (1 for irradiance, 1 for wind)
- EWM step maintains time resolution, and smooths output in the *right way*.
 - Python pandas (built-in), or custom numpy or cython
- MBE_{train} shifts output for MBE ≈ 0 (and improves RMSE & MAE)



Filter-EWM-MBE (FEM) correction steps

- Filter(s): to get steady-state model coefficients + thermal time constant $\boldsymbol{\tau}$
 - Ross/heating coefficient: low WS, variable G
 - WS convective cooling coefficient: high, constant G, variable WS
 - τ : how fast is ΔT , for given ΔG
- Exponential weighted mean (EWM), using τ & time resolution Δt . Makes model dynamic.
 - Smoothing coefficient α : $\alpha = 1 e^{-\frac{\Delta t}{\tau}} \Rightarrow \text{link } \tau \& \Delta t \Rightarrow \text{EWM adapts to different } \Delta t$
 - Apply in python pandas (or numpy, or...).
- Mean Bias Error (MBE) correction: use FE steps on training dataset, calculate MBE_{train}, use on testing or production dataset
 - Basically, don't stop at (first) MBE calculation; instead use as "free lunch" for improved RMSE, MAE and MBE.
- FEM is sequence of (mostly) independent steps: FE-, -EM, F-M, F-- all possible

Models & notation

- Over-temperature T_o:
- Ross:
- King or SAPM:
- Faiman:
- Wind model 1 (WM1):
- Wind model 2 (WM2):
- Note: When WS = 0, (nearly) all models become Ross
 - **k** = **R**-value \mathbf{r}_{eq} [K/(W/m²)] \Rightarrow easiest @ G_{STC} : $k = 30 \left[\frac{K}{1000\frac{W}{m^2}}\right] \Rightarrow T_o = 30 \text{ K}$ @ G_{STC}

- $k = e^a = \frac{1}{U_0} \Rightarrow$ model bridge Ross King/WM1/WM2/Faiman
- King/SAPM = WM1 when using same coefficients.

Use only G, T_{amb} , WS \Rightarrow wide implementation

$$T_{o} = T_{M} - T_{amb}$$

$$T_{o,Ross} = k \cdot G$$

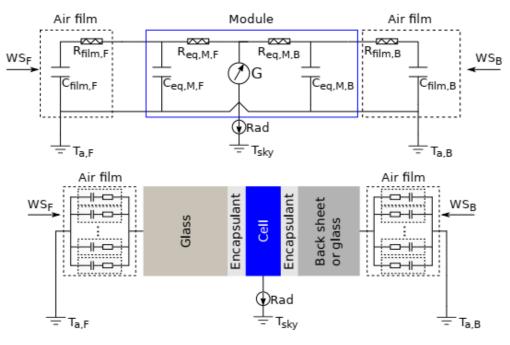
$$T_{o,King} = G \cdot e^{a+b \cdot WS}$$

$$T_{o,Faiman} = \frac{G}{U_{0}+U_{1} \cdot WS}$$

$$T_{o,WM1} = k \cdot G \cdot e^{-WS/d}$$

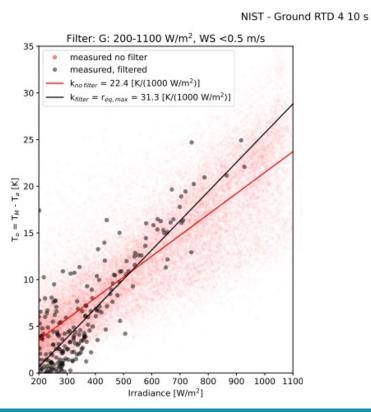
$$T_{o,WM2} = G \cdot (k - h \cdot WS|_{WS \le 8})$$

Modified RC-equivalent network



- Air films: *series* RC-networks, in *parallel* to each other, impacted by WS.
 - Low WS: high r_{eq}, low(er) c_{eq}
 - High WS: lower r_{eq}, higher(er) c_{eq}
 - Explanatory link theory-data
- RC network \Rightarrow thermal time constant τ
 - From material properties
 - From outdoor measured data: look for irradiance *step changes*
- τ used for Exponential Weighted Mean (EWM) calculation ⇒ make model dynamic

Filter: determining k & d for WM1



- To find **k**:
 - $\Delta t = 5 \min (resample data)$
 - Filter: G = 200-1100 W/m², WS < 0.5 m/s
 - Linear regression T_o vs G
 - k gives $T_o @ G_{STC} \& WS \approx 0 m/s$.

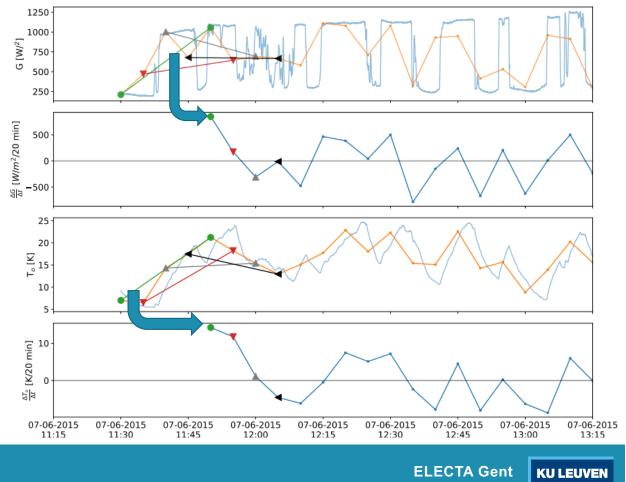
$$k = 31.3 \frac{mK}{W/m^2}$$
 gives 31.3 K above T_{amb}
 $U_0 = \frac{1}{k} = \frac{1}{31.3/1000} = 31.9 \frac{W/m^2}{K}$

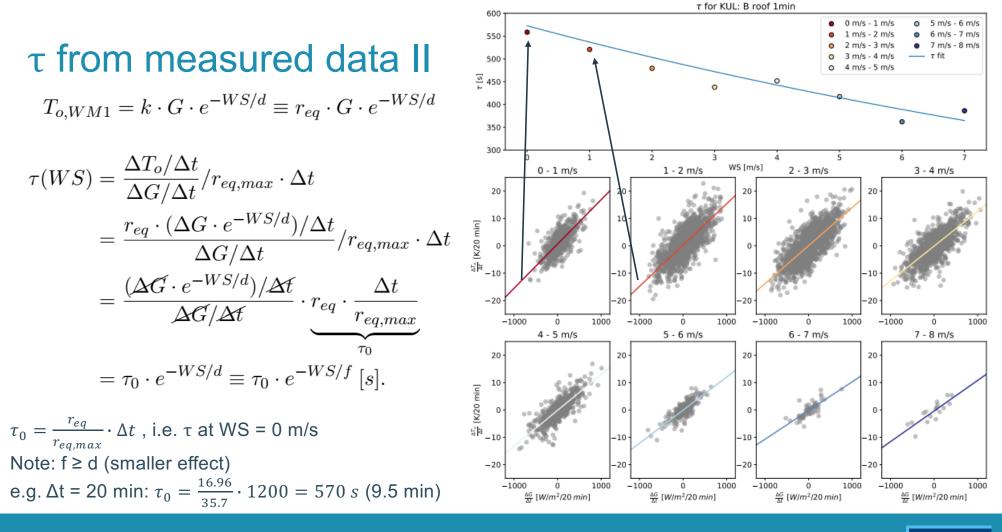
To find **d**:

- $\Delta t = 5 \min (resample data)$
- Filter: G = 1000 ± 100 W/m², WS = 0-8 m/s
- Linear regression In(T_o/G) vs WS
- Faiman U₁: G/T_o vs WS

Determining the thermal time constant τ from measured data

- Find $\frac{\Delta G}{\Delta t}$ & $\frac{\Delta T_o}{\Delta t}$ for 5 min data, and 4 periods (20 min total).
- 20 min: longest time window with sufficient frequency of sustained irradiance step changes
- Sort $\frac{\Delta G}{\Delta t}$ & $\frac{\Delta T_o}{\Delta t}$ by WS bins (0-1, 1-2, ..., 7-8 m/s).
- Linear regression of $\frac{\Delta T_o}{\Delta t}$ vs $\frac{\Delta G}{\Delta t}$ per WS bin \Rightarrow get τ





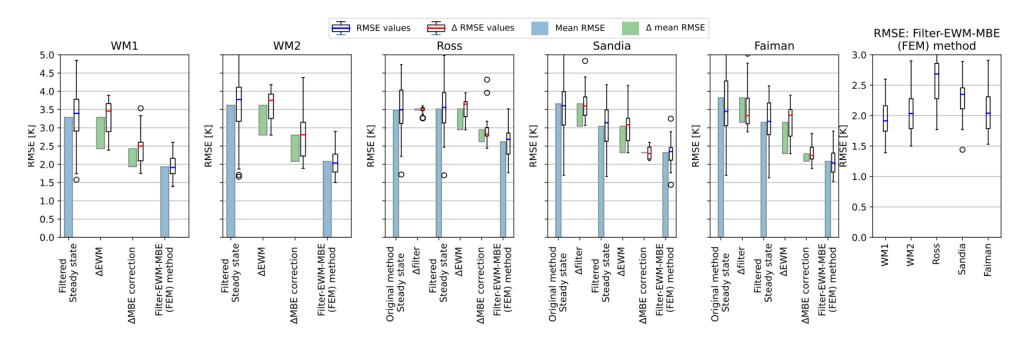
ELECTA Gent KU LEUVEN

The EWM step

- $\tau = 6.3 \pm 1 \min (378 \pm 60 \text{ s})$
 - Works quite good for ~ all systems (design phase + evaluation after)
 - Better results possible from measured data
 - Impact on RMSE by choosing "wrong" (± 60 s) τ is typ. 0.1 K ~ 0.3 K (e.g. 2.0 K w/ ideal τ, 2.3 K w/ non-ideal τ)
- Important: Δt and τ must have same time units: $\alpha = 1 e^{-\Delta t/\tau}$
- EWM step in python pandas is *fast* (<1 s for 1 y @ 1 s modelling)
- df['G'] ⇒ df['G'].ewm(alpha=alpha_EWM).mean()

Impact of each step in FEM

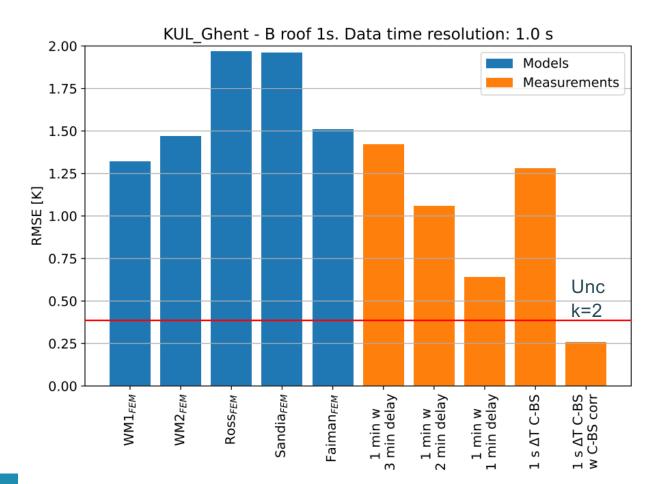
Impacts typically add (compounding effect): $F \Rightarrow FE \Rightarrow FEM$ Filter & EWM largest impact, MBE correction can be meaningful (~ 0.5 K RMSE)



ELECTA Gent KU LEUVEN

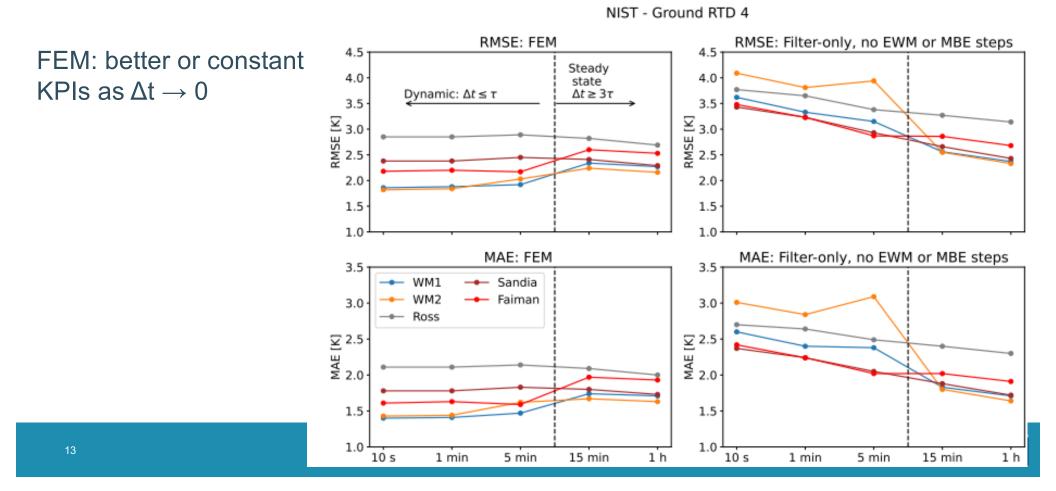
Contextualisation

- Best model results ≈ 1 min data w/ 3 min signal delay
- BS w/ BS-to-cell correction (with EWM) ≈ identical to measured data (within meas. uncertainty)
- Accurate and well-installed and well-maintained (backsheet) sensors still (way) better than models



ELECTA Gent K

FEM with changing time resolution

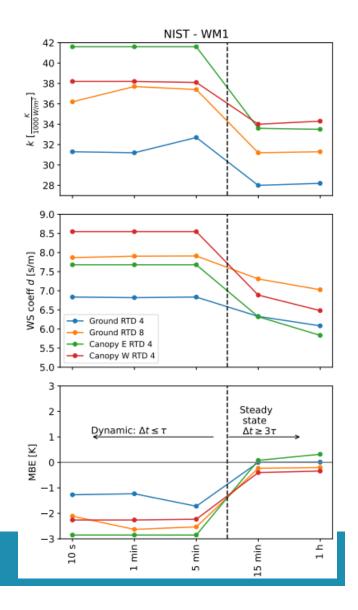


Impact of time resolution

Difference between steady state & dynamic coefficient values can lead to important model errors

- Error: Use thermal model <u>steady state</u> coefficient values at <u>dynamic time scales</u> (e.g. PVsyst U₀ and U₁, or WM1 k & d) erroneously for data analysis
 - E.g. PR calculation & weather correction, using 5 min data and the contract model coefficients (@ 1 h).
- MBE_{steady state, training} ≈ 0 K, MBE_{dynamic,training} ≈ -1 K to -3 K
- As $\Delta t \rightarrow 1 s \text{ k \& d increase}$ (or $k_{dyn} > k_{steady state}$)
- PR impact ~0.5% to 1.0% points ($\gamma = -0.35\%/K$). \Rightarrow EPC warranty envelope...

4CV.1.1 Making Equation-Based Thermal Models Dynamic: The Filter-EWM-MBE (FEM) Correction Approach, EU PVSEC 2023



Conclusions

- FEM approach gives better, more stable (repeatable) coefficients \Rightarrow KPIs (RMSE, MAE, MBE) better or stable as Δt : 1 $h \rightarrow$ 1 s
- EWM step makes (any) model dynamic; fast, easy & simple use in python pandas
- Thermal time constant τ linked to material properties (τ_0), affected by mounting conditions (wind access)
- Module sensors (if accurate + well-installed + well-maintained) still much better than models
- Careful using coefficients: distinction between steady-state & dynamic needed
 - ~ 5-20% difference for k & d (or U₀ & U₁) between steady state & dynamic ⇒ source of error when comparing design (PVsyst/pvlib/...) @ 1 h resolution with measured data at 1 s to 5 min

Thank you

- Many thanks to those who have shared their data:
 - NIST: <u>https://doi.org/10.18434/M3S67G</u>
 - IEA PVPS Task 13 PLR group: https://doi.org/10.17605/OSF.IO/VTR2S
 - University of Heidelberg: https://doi.org/10.5281/zenodo.3958820
 - KU Leuven: https://doi.org/10.48804/RVTSD4

Call to action: please share more data!

Contact: <u>bert.herteleer@kuleuven.be</u>

 \Rightarrow interest in evaluating FEM approach on 1-axis systems & different system types

ELECTA Gent KU LEUVEN