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• After irradiance, temperature estimation is the most important factor
• Thermal models were (implicitly) steady-state ⇒ better RMSE, MAE, MBE for dynamic models
• Previous methods for dynamic models laborious or physics-intensive, e.g. Lobera et al, 2013: 

10.1016/j.solener.2013.03.028
• First step-change: Prilliman et al “Transient Weighted Moving-Average Model of Photovoltaic

Module Back-Surface Temperature”, IEEE J PV, 2020 & pvlib implementation
• Requires Finite Element Analysis (FEA) ⇒ labour intensive
• Still too much physics!

Our solution: what if you can find what you need from measured data? ⇒ Investigating methods 
to improve photovoltaic thermal models at minute-to-second timescales, Solar Energy, 2023
• Inspired by Armstrong & Hurley (A thermal model for photovoltaic panels under varying 

atmospheric conditions, Applied Thermal Engineering 2010) + PhD (2016) ⇒ Find τ from data
• Process for reliable coefficients: filters, linear regressions, corrections
• Tested on 15 sites, 24 datasets, from 1 s to 1 h
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Making equation-based models reliably dynamic

http://dx.doi.org/10.1016/j.solener.2013.03.028
doi.org/10.1109/JPHOTOV.2020.2992351
doi.org/10.1109/JPHOTOV.2020.2992351
https://doi.org/10.1016/j.solener.2023.111889
https://doi.org/10.1016/j.solener.2023.111889
doi.org/10.1016/j.applthermaleng.2010.03.012
https://lirias.kuleuven.be/retrieve/365324
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FEM in practice
• Filter step gives “ideal” 

coefficients.
•2 linear regressions instead 
of 1 
(1 for irradiance, 1 for wind)

• EWM step maintains time 
resolution, and smooths
output in the right way.
• Python pandas (built-in), or 

custom numpy or cython
• MBEtrain shifts output for 

MBE ≈ 0 
(and improves RMSE & MAE)
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• Filter(s): to get steady-state model coefficients + thermal time constant τ
• Ross/heating coefficient: low WS, variable G
• WS convective cooling coefficient: high, constant G, variable WS
• τ: how fast is ΔT, for given ΔG  

• Exponential weighted mean (EWM), using τ & time resolution Δt. 
Makes model dynamic.

• Smoothing coefficient α:	𝛼 = 1− 𝑒!
!"
# ⇒ link 𝝉 & Δt ⇒ EWM adapts to different Δt

• Apply in python pandas (or numpy, or…). 
• Mean Bias Error (MBE) correction: use FE steps on training dataset, calculate MBEtrain, 

use on testing or production dataset
• Basically, don’t stop at (first) MBE calculation; instead use as “free lunch” for

improved RMSE, MAE and MBE.
• FEM is sequence of (mostly) independent steps: FE-, -EM, F-M, F-- all possible
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Filter-EWM-MBE (FEM) correction steps
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• Over-temperature To: 𝑻𝒐 = 𝑻𝑴 −𝑻𝒂𝒎𝒃
• Ross: 𝑇',)'** = 𝑘 + 𝐺
• King or SAPM: 𝑇',+,-. = 𝐺 + 𝑒/01234

• Faiman: 𝑇',5/,6/- =
7

8$08%234

• Wind model 1 (WM1): 𝑻𝒐,𝑾𝑴𝟏 = 𝒌 + 𝑮 + 𝒆 ;&𝑾𝑺
𝒅

• Wind model 2 (WM2): 𝑇',3<= = 𝐺 + 𝑘 − ℎ + 𝑊𝑆|34>?
• Note: When WS = 0, (nearly) all models become Ross

• k = R-value req [K/(W/m2)] ⇒ easiest @ GSTC: 𝑘 = 30 +
@AAA*+,

⇒ To = 30 K @ GSTC

• 𝒌 = 𝒆𝒂 = 𝟏
𝑼𝟎
⇒ model bridge Ross – King/WM1/WM2/Faiman

• King/SAPM = WM1 when using same coefficients.
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Models & notation Use only G, Tamb, WS ⇒ wide implementation
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• Air films: series RC-networks, in parallel to
each other, impacted by WS.

• Low WS: high req, low(er) ceq

• High WS: lower req, higher(er) ceq

• Explanatory link theory-data
• RC network ⇒ thermal time constant τ

• From material properties
• From outdoor measured data: look for

irradiance step changes
• τ used for Exponential Weighted Mean

(EWM) calculation ⇒ make model dynamic

Modified RC-equivalent network
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• To find k:
• Δt = 5 min (resample data) 
• Filter: G = 200-1100 W/m2, 

WS < 0.5 m/s
• Linear regression To vs G
• k gives To @ GSTC & WS ≈ 0 m/s. 

𝑘 = 31.3 ./
0! "#

gives 31.3 K above Tamb

• 𝑈0 =
1
2
= 1

31.3/1666
= 31. 9

0! "#

/

• To find d:
• Δt = 5 min (resample data)
• Filter: G = 1000 ± 100 W/m2, 

WS = 0-8 m/s
• Linear regression ln(To/G) vs WS
• Faiman U1: G/To vs WS

Filter: determining k & d for WM1
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Determining the thermal time constant τ from
measured data

• Find !"
!#

& !$7
!#

for 5 min data, 
and 4 periods (20 min total).

• 20 min: longest time window 
with sufficient frequency of 
sustained irradiance step 
changes

• Sort !"
!#

& !$7
!#

by WS bins 
(0-1, 1-2, …, 7-8 m/s).

• Linear regression of !$7
!#

vs !"
!#

per WS bin ⇒ get τ
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τ from measured data II

𝜏! =
"!"

"!",$%&
' Δ𝑡 , i.e. τ at WS = 0 m/s

Note: f ≥ d (smaller effect)
e.g. Δt = 20 min: 𝜏! =

#$.&$
'(.)

' 1200 = 570 𝑠 (9.5 min)
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• 𝜏 = 6.3 ± 1 𝑚𝑖𝑛 (378 ± 60 s)
• Works quite good for ~ all systems (design phase + evaluation after)
• Better results possible from measured data
• Impact on RMSE by choosing “wrong” (± 60 s) τ is typ. 0.1 K ~ 0.3 K 

(e.g. 2.0 K w/ ideal τ, 2.3 K w/ non-ideal τ)
• Important: Δt and τ must have same time units:  𝛼 = 1 − 𝑒0!#/2

• EWM step in python pandas is fast (<1 s for 1 y @ 1 s modelling)
• df[‘G’] ⇒ df[‘G’].ewm(alpha=alpha_EWM).mean()
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The EWM step
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Impact of each step in FEM
Impacts typically add (compounding effect): F ⇒ FE ⇒ FEM
Filter & EWM largest impact, MBE correction can be meaningful (~ 0.5 K RMSE)
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Contextualisation

• Best model results ≈ 1 min 
data w/ 3 min signal delay

• BS w/ BS-to-cell correction
(with EWM) ≈ identical to
measured data 
(within meas. uncertainty)

• Accurate and
well-installed and
well-maintained
(backsheet) sensors still
(way) better than models

Unc
k=2
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FEM with changing time resolution

FEM: better or constant 
KPIs as Δt → 0
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Difference between steady state & dynamic coefficient 
values can lead to important model errors
• Error: Use thermal model steady state coefficient values 

at dynamic time scales
(e.g. PVsyst U0 and U1, or WM1 k & d) erroneously for 
data analysis

• E.g. PR calculation & weather correction, using 5 min 
data and the contract model coefficients (@ 1 h).

• MBEsteady state, training ≈ 0 K, 
MBEdynamic,training ≈ -1 K to -3 K

• As Δ𝑡 → 1 𝑠 k & d increase (or kdyn > ksteady state)
• PR impact ~0.5% to 1.0% points (γ = -0.35%/K). 
⇒ EPC warranty envelope…

Impact of time resolution

4CV.1.1 Making Equation-Based Thermal Models Dynamic: The 
Filter-EWM-MBE (FEM) Correction Approach, EU PVSEC 2023
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• FEM approach gives better, more stable (repeatable) coefficients ⇒ KPIs (RMSE, 
MAE, MBE) better or stable as Δ𝑡: 1 ℎ → 1 𝑠

• EWM step makes (any) model dynamic; fast, easy & simple use in python pandas
• Thermal time constant τ linked to material properties (𝜏3), affected by mounting

conditions (wind access) 
• Module sensors (if accurate + well-installed + well-maintained) still much better than

models
• Careful using coefficients: distinction between steady-state & dynamic needed

• ~ 5-20% difference for k & d (or U0 & U1) between steady state & dynamic
⇒ source of error when comparing design (PVsyst/pvlib/…) @ 1 h resolution
with measured data at 1 s to 5 min
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Conclusions
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• Many thanks to those who have shared their data:
• NIST: https://doi.org/10.18434/M3S67G
• IEA PVPS Task 13 PLR group: https://doi.org/10.17605/OSF.IO/VTR2S
• University of Heidelberg: https://doi.org/10.5281/zenodo.3958820
• KU Leuven: https://doi.org/10.48804/RVTSD4

Call to action: please share more data!

Contact: bert.herteleer@kuleuven.be
⇒ interest in evaluating FEM approach on 1-axis systems & different system types
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Thank you

https://doi.org/10.18434/M3S67G
https://doi.org/10.17605/OSF.IO/VTR2S
https://doi.org/10.5281/zenodo.3958820
https://doi.org/10.48804/RVTSD4
mailto:bert.herteleer@kuleuven.be

