Systematic Approaches to Ensure Correct Representation of Measured Multi-Irradiance Module Performance in PV System Energy Production Forecasting Software Programs

Kenneth J. Sauer¹, Thomas Roessler² ¹Yingli Green Energy Americas, Inc. ²Yingli Green Energy Europe GmbH

Presented at the 2013 PV Performance Modeling Workshop Santa Clara, CA | May 1-2, 2013

Published by Sandia National Laboratories with the permission of the authors.

Outline

Basics

- Main components of PV module models
- Multi-irradiance behavior of PV modules
- Self-reference method
- Multi-irradiance behavior in <u>PV*SOL®</u> and <u>PVsyst</u>
- Motivation: Example data and default models
- Systematic approaches for fitting PV module models
 - PV*SOL®
 - PVsyst
- Impact on energy forecasts
- Summary and outlook
- Appendix: New software versions

Basics: Main components of PV module models

Provision via data sheet Additional characterization

Basics: Multi-irradiance behavior of PV modules

 Characterized via "relative efficiency deviation" Δη_{rel} [%] as function of irradiance G [W/m²]:

$$\Delta \eta_{\text{rel}}(G) = \left(\begin{array}{c} P_{\text{max}}(G) \\ \hline P_{\text{max,ref}} \end{array} x \begin{array}{c} G_{\text{ref}} \\ \hline G \end{array} \right) - 1$$

Subscript "ref" means reference conditions; usually STC (where G_{ref}=1,000W/m²).

Basics: Self-reference method

- For linear devices, if data are obtained from indoor flash testers, check that deviations from I_{sc} linearity are <1% (see IEC 61853-1 Section 8)
- Possible causes of I_{sc} non-linearity include but are not limited to:

2.0%

- Spectral mismatch between the irradiance sensor and sample under test if the spectrum changes over the irradiance range
- Spatial non-uniformity caused by filter placement during calibration or test
- Obtain effective irradiance G used to calculate Δη_{rel} following the self-reference method (IEC 61853-1 Section 8):

$$G = G_{ref} * (I_{sc} / I_{sc,ref}).$$

Multi-irradiance behavior in PV*SOL® and PVsyst **PV*SOL®** (v4.0)

🛃 D

 Multi-irradiance behavior via one value of irradiance below reference conditions (G_{partial_load}), at which I-V curve parameters must be provided

Basic Data U/I Char STC U/I Char Par Working Point under STC	t Load Other Data		
Working Point under STC			
Working Point under STC			
MPP Voltage [V] 31.00	MPP Current [A] 8.55		
Open Circuit Voltage [V] 39.00	Short Circuit Current [A] 8.93		
Fill Factor 76.1	Rel. Efficiency [%] 100		
-Working Point during Part Load Operation-			
Gpartial_load Standard Part Load Operation			
Irradiation [W/m ²] 300	Module Temperature [°C] 25		
MPP Voltage [V] 28.2951	MPP Current [A] 2.5650		
Open Circuit Voltage [V] 33.9019	Short Circuit Current [A] 2.6790		
Fill Factor 79.9	Rel. Efficiency [%] 91.3		

PVsyst (V5.56)

 Multi-irradiance behavior via 5 parameters of one-diode model (series and shunt resistance, photo current, saturation current and diode quality factor), where 2 additional parameters are used to describe $R_{Sh}(G)$

efinition of a P¥ modu	le	
sic data Model paramet	ers Sizes and Technology Commercial Graphs	
escription Yingli Gree Rshunt - Rserie RShun ⊤Basic model param	n Energy, YL235P-29b Default IEEE texpon. Temper. coeff.	
Shunt resistance Series res. (model) Series res. (apparent Diode satur. current Diode quality factor	Model through given lsc, Mpp, Voc Rsh 250 0 hm Im Rs 0.220 0 hm Im Im dV/dl 0.47 0 hm Im Rsh 250 0 hm loRef 122 nA Rsh 250 0 hm Rsh 250 0 hm Gamma 1.35 0.001/K	
Voltage temp. coeff.	Image: Constraint of a PV module	
The I/V characteri the three given po Diode saturation curre temperature coefficien requirement. Choose the series resi "reasonable" diode qu Or click the "Default" choose the value for ;	Basic data [Model parameters]] Sizes and Technology [Commercial] Graphs Description Yingli Green Energy, YL235P-29b Default IEEE Rshunt - Rseiie RShunt expon. Temper. coeff. Exponential behaviour of Rsh as function of incident irradiance. Rshunt as filtradiance) Rshunt as filtradiance) Fitting tool for known Rsh values You may fit the exp. parameters on a set of known values. Please create/delete points with right click. Girreid DE R shunt DE R shu	
	Copy to table	🗸 ОК

Motivation: Example data and default models

- (22) 235W Yingli Solar mc-Si PV modules
- Reputable 3rd party laboratory in USA
- Class AAA pulsed solar simulator
- I-V curve at STC
- 4 additional I-V curves (25°C and AM 1.5g)

IEC 61853-1

Section 8.5

- 800W/m²
- 600W/m²
- 400W/m²
- 200W/m²
- Δη_{rel}(200W/m²):
 - Measured averages
 - Default PVsyst (V5.56)
 - Default PV*SOL® (v4.0) =

Systematic approach for PV*SOL®

- One user-modifiable variable (G_{partial_load}), thus manual optimization possible
- Limitations of coarse-grained grid of tested G
- Interpolation of measured data (IEC 61853-1 Section 9)
- RMSD: 6.19% (default) → 0.05% (optimized)

Systematic approach for PVsyst

- Optimization over a 4dimensional space of parameters describing parasitic series and shunt resistances
 - Numerical optimization procedures are required
- RMSD: 3.46% (default) → 0.07% (optimized)

Impact on energy forecasts

- Annual energy production simulated over four geographically distributed locations
- Reported as gains in forecasted outputs using optimized models over forecasted outputs using default models
 - -PV*SOL®: 3-6% gains
 - -PVsyst: 2-3% gains

Summary and outlook

- Risk of relying on default settings that prescribe irradiance behavior in PV*SOL® and PVsyst module models
- Importance of characterizing PV modules following, e.g., IEC 61853-1
 - -Plus fine-grained measurements close to max[FF(G)]
- Systematic optimization procedures reported for fitting PV module models to measured data
- Next step: field validation of optimized models

Appendix: New software versions

