Performance evaluation of PV power predictive models for real-time monitoring

Andreas Livera1, Marios Theristis1, George Makrides1, Juergen Sutterlueti2, Steve Ransome3 and George E. Georghiou1

1PV Technology Laboratory, University of Cyprus, Nicosia, Cyprus
2Gantner Instruments GmbH, Schruns, Austria
3Steve Ransome Consulting Ltd, Kingston upon Thames, UK
Acknowledgement

Specific Objective: Development of an innovative condition monitoring platform for proactive and reactive O&M with enhanced data analytic functionalities

Advanced baseline condition monitoring solution to ensure operational quality and optimise energy production

Partners: GI and UCY
Project: Innovative Performance Monitoring System for Improved Reliability and Optimized Levelized Cost of Electricity IPERMON [Solar-ERA.net project]
Budget: €400,000
Duration: 36 Months (April 2016 – Sept 2019)
Weblink: http://www.pvtechnology.ucy.ac.cy/projects/ipermont/
Introduction

• Accurate output power prediction is crucial for PV performance assessment
• Predictive models are required for data-analytic features of advanced PV monitoring systems

Data-analytic features

• System health state
• Failure diagnosis
Objective

Development of an optimized location- and technology-independent predictive modeling methodology at **minimum requirements**

Input
- Features
- Dataset split method
- Dataset split partition
- Filtering stages
- Weather conditions

Output
Methodology – Approach

1. Get Data
2. Train Model
3. Clean, Prepare & Manipulate Data
4. Test Data
5. Improve
Methodology – Experimental setup

• Recording of meteorological and PV operational measurements (IEC 61724)
• Measurement resolution 1-sec and recording intervals 1-, 15-, 30- and 60-min
Methodology – Data quality routines (DQRs)

- Identification of repetitive data and duplicates
- Identification of missing or erroneous data, outliers and outages
- Correction of erroneous/missing data through data imputation techniques
Methodology – Data quality routines (DQRs)

1. **Identification of duplicates**
 - Check timestamp measurements against known timestamp series
 - Check for row measurement duplicates

2. **Identification of missing data**
 - Search for NAN values from the dataset

3. **Identification of erroneous data**
 - Set threshold ranges for:
 - 0 < Irradiance < 1300 (W/m²)
 - 0 < DC Power < STC power x 1.3
 - 0 < DC Voltage < STC Voltage x 1.1
 - 0 < DC Current < STC Current x 1.25

4. **Data filtering**
 - Night time effects can be removed (e.g. Irradiance < 50 W/m²)

5. **Data correction**
 - Data imputation techniques for handling erroneous or missing data
Methodology – Predictive model selection

Empirical

MECHANISTIC PERFORMANCE MODEL ‘MPM’

\[PR = \left(\frac{P_{\text{MEAS}}}{P_{\text{NOM}}/G_1} \right) = C_1 + C_2 * T_{\text{mod}} + C_3 * \log_a(G_i) + C_4 * G_i + C_5 * W_S \]

- **P TOLERANCE**: %
- **GAMMA**: %/K
- **LLEC**: %/STC
- **RS**: %/STC
- **WIND**: %/(ms⁻¹)

Machine Learning

Feed-Forward Neural Network (FFNN)
Methodology – Train model and test data

Dataset (1 year of hourly historical actual data)

- **Measured Inputs**
 - G_i
 - T_{mod}
 - RH
 - WS
 - W_{alpha}
 - AzS
 - AlS
 - Pmp

- **Calculated Inputs**

- **Output**

Dataset split method
- Continuous
- Random

Dataset split partition
- 70:30% train and test set
- 30:30% train and test set
- 10:30% train and test set
Results – Input features (Machine Learning)

- Machine learning model with measured and calculated features

<table>
<thead>
<tr>
<th>Inputs</th>
<th>2 Inputs</th>
<th>4 Inputs</th>
<th>7 Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>nRMSE</td>
<td>1.13%</td>
<td>1.12%</td>
<td>0.91%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.93%</td>
<td></td>
</tr>
</tbody>
</table>

Best performance FFNN

Random 70:30% nRMSE 1.18%
Continuous 70:30% nRMSE 1.33%
UCY OTF
Results – Output features (Machine Learning)

- Machine learning model with measured and calculated features

7 Inputs – PR output
7 Inputs – P_{mp} output

Random 70:30% | **Continuous** 70:30%
nRMSE 1.30% | **nRMSE 1.33%**
nRMSE 0.91% | **nRMSE 0.93%**

Best performance FFNN

Random – Recommended dataset split method
Results – Input features (Mechanistic)

• Mechanistic model with measured and meaningful, orthogonal, robust and normalized features

\[
PR = \left(\frac{P_{\text{MEAS}}}{P_{\text{Nom}}}/G_i \right) = C_1 + C_2 T_{\text{mod}} + C_3 \log_{10}(G_i) + C_4 G_i + C_5 WS
\]

Inputs:
• Module temperature \((T_{\text{mod}})\)
• Global irradiance \((G_i)\)
• Wind speed \((WS)\)

Requirements for optimal devised model:
• Irradiance Filter \((G_i > 100 \, W/m^2)\)
• Time Filter \((08:00 \leq \text{Time} \leq 17:00)\)
Results – Input features (Mechanistic)

Random 70:30% - GI OTF

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 (%)</td>
<td>114.09</td>
</tr>
<tr>
<td>C2 (%/K)</td>
<td>-0.39</td>
</tr>
<tr>
<td>C3 (%)</td>
<td>25.05</td>
</tr>
<tr>
<td>C4 (%)</td>
<td>-17.87</td>
</tr>
<tr>
<td>C5 (%/ms(^{-1}))</td>
<td>0.08</td>
</tr>
</tbody>
</table>

The formula for PR is:

\[
PR = \left(\frac{P_{\text{MEAS}}}{P_{\text{NOM}}/G_i} \right) = C_1 + C_2 \cdot T_{\text{mod}} + C_3 \cdot \log(G_i) + C_4 \cdot G_i + C_5 \cdot \text{WS}
\]

TOLERANCE
- C1: Global Tolerance (%)
- C2: Global Tolerance (%/K)
- C3: Local Tolerance (@LIC)
- C4: Local Tolerance (@STC)
- C5: Local Tolerance (%/ms\(^{-1}\))

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STC</td>
<td>Standard Test Conditions (1000 W/m(^2), 25°C)</td>
</tr>
<tr>
<td>NOCT</td>
<td>Nominal Operating Cell Temperature</td>
</tr>
<tr>
<td>GI OTF</td>
<td>Global Irradiance Operating Temperature Factor</td>
</tr>
<tr>
<td>PMAX</td>
<td>Maximum Power (W)</td>
</tr>
<tr>
<td>LLEC</td>
<td>Light Level Efficiency Curve</td>
</tr>
<tr>
<td>GAMMA</td>
<td>Gamma</td>
</tr>
<tr>
<td>Gi (kW/m(^2))</td>
<td>Irradiance (W/m(^2))</td>
</tr>
</tbody>
</table>

Diagram

- **PRdC** vs. **Gi (kW/m\(^2\))**
- **Pmax**/**Tmod**
- **Gi**
- **Gamma**
- **LLEC**
- **STC**
- **NOCT**
- **Series Resistance**
- **thermal rise**
- **Actual/Nameplate Pmax**

Illustrating good PV Performance:
- Uniform vertical separation means gamma = constant
- Smooth behaviour at lowest and highest light levels
Results – Influence of filtering (Mechanistic)

Random 70:30% - GI OTF

MPM – Improved performance at high irradiance levels
Results – Influence of filtering (Mechanistic)

- Filtering at $G_I > 100 \, W/m^2$ (GI OTF)

 - $G_I > 100 \, W/m^2$
 - nRMSE 1.03%
 - MPM – Higher accuracy by applying irradiance filters (2.15% without any filter)

 - $G_I > 400 \, W/m^2$
 - nRMSE 0.88%

 - $G_I > 600 \, W/m^2$
 - nRMSE 0.87%
Results – Influence of filtering (Mechanistic)

- Filtering at $G_I > 100 \text{ W/m}^2$ (GI OTF)

72% of days exhibiting daily nRMSE accuracies below 1% independent of the type of day (clearness index)
Results – Influence of filtering (Machine Learning)

- Filtering at different irradiance levels (UCY OTF)

Without filter:
- nRMSE 0.91%

ML – Improved performance at increased data for training:
- $G_I > 100 \, W/m^2$
- nRMSE 1.31%

ML – Accuracy not improved by applying irradiance filter:
Results – Influence of filtering (Machine Learning)

- Filtering at \(G_I > 100 \, W/m^2 \) (UCY OTF)

 \[G_I > 100 \, W/m^2 \]
 nRMSE 1.31%

 ML – Accuracy not improved by applying irradiance filter

 \[G_I > 400 \, W/m^2 \]
 nRMSE 1.36%

 \[G_I > 600 \, W/m^2 \]
 nRMSE 1.29%
Results – Influence of filtering (Machine Learning)

• Filtering at $G_I > 100 \text{ W/m}^2$ (UCY OTF)

62% of days exhibiting daily nRMSE accuracies below 1.3% independent of the type of day (clearness index)
Results – Dataset split partitions

- Training at different dataset split partitions (10, 30 and 70% of yearly data)

Random training - Accurate predictions for both models even at small amount of training data partitions

Continuous training – Seasonal errors

- FFNN
- MPM
Summary

<table>
<thead>
<tr>
<th>Mechanistic</th>
<th>Machine Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Simple implementation (low complexity)</td>
<td>• Higher complexity for implementation</td>
</tr>
<tr>
<td>• Robustness at high irradiance conditions</td>
<td>• Robust at all irradiance conditions only after training at different data combinations</td>
</tr>
<tr>
<td>• Irradiance filter improves prediction accuracy</td>
<td>• No data filtering requirements</td>
</tr>
<tr>
<td>• Robust model at low duration data set partitions</td>
<td>• Higher training data partitions yield more accurate predictions</td>
</tr>
<tr>
<td>• Useful, physically meaningful coefficients</td>
<td>• No direct usable coefficients</td>
</tr>
</tbody>
</table>
Conclusions

• The MPM and the FFNN predictive models were compared in terms of input/output features (model complexity), filtering criteria, dataset split method and partition

• Optimal models: 7 inputs parameter FFNN compared with 5 inputs parameter MPM

• Application of irradiance filter yielded higher predictive accuracy only for the MPM

• Random dataset split method is recommended for both models

• FFNN - Lowest nRMSE of 0.91% for a random 70:30% train/test set approach (UCY OTF)

• MPM - Lowest nRMSE of 1.12% for a random 10:30% train/test set approach (GI OTF)
Next steps...

- Influence of irradiance profiles classification and establishment of minimum requirements for daily weather classification
- Further improvement of the MPM (spectral and AOI corrections) for more accurate predictions
- Benchmarking on several PV systems installed at different locations

<table>
<thead>
<tr>
<th>Class</th>
<th>k_d</th>
<th>POP_d</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$k_d \geq 0.6$</td>
<td>$POP_d \geq 0.9$</td>
<td>High Quantity High Quality</td>
</tr>
<tr>
<td>2</td>
<td>$0.3 \leq k_d < 0.6$</td>
<td>$POP_d \geq 0.9$</td>
<td>Medium Quantity and High Quality</td>
</tr>
<tr>
<td>3</td>
<td>$k_d < 0.3$</td>
<td>$POP_d \geq 0.9$</td>
<td>Low Quantity High Quality</td>
</tr>
<tr>
<td>4</td>
<td>$k_d \geq 0.6$</td>
<td>$0.7 \leq POP_d < 0.9$</td>
<td>High Quantity Medium Quality</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>8</td>
<td>$0.3 \leq k_d < 0.6$</td>
<td>$0.5 \leq POP_d < 0.7$</td>
<td>Medium Quantity Low Quality</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>$POP_d < 0.5$</td>
<td>Very Low Quality</td>
</tr>
</tbody>
</table>
Thank you for your attention

Marios Theristis, PhD
PV Technology Laboratory
University of Cyprus
Email: theristis.marios@ucy.ac.cy

Website: www.pvtechnology.ucy.ac.cy
www.gi-cloud.io