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Why PV Forecasting is Useful
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Background

• Sudden changes (“ramps”) in PV production caused 
by clouds are bad for grid stability, especially in 
microgrids.

• Microgrids need to maintain a lot of spinning reserve, 
usually with diesel generators.
• 1-2 minutes to start and sync a diesel generator.
• Cannot be run below ~30% capacity 
• Fuel/maintenance is expensive, especially for rural 

microgrids.

• Energy storage can help but is expensive.

A Potential Solution

• Short-term forecasting: what if grid 
operators/control systems could predict PV 
production 1-2 minutes into the future?
• Leave more generators offline?
• Smaller energy storage systems?
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Options for PV Forecasting

UA is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual: www.alaska.edu/nondiscrimination.

Background

Numerical Weather Prediction (NWP)

Satellite Imaging

Sky Cameras (TSI)

Distributed Sensor Networks

• High data bandwidth 
requirements.

• Limited spatial/temporal 
resolution

• Very limited data at high 
latitudes.

• Can be expensive, difficult to 
maintain [1]

• Reduced accuracy below 5-minute 
time horizon due to shadow band [2].

• High data bandwidth.

• Sensors collect irradiance data from around PV array.
• Shown to outperform TSI in 1-2-minute horizon range [3].
• Lower cost than TSI systems [4]

• Time horizons of hours to 
days.

• Computationally intensive.
• Used for larger-scale 

regional forecasts.

[NOAA][NOAA]
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Methodology

One of the sensors deployed near the Kotzebue, Alaska

Sensor Design

● Operate wirelessly on their own power.

● Transmit data over several kilometers.

● Survive in a high-wind environment with temperatures as low as -40 ℃. 

● Not too expensive.

● Arduino microcontroller.

● 1-watt PV panel for sensing irradiance and powering the device.
● Plus a non-rechargable battery (too cold for standard Li-ion).

● LoRaWAN radio communications.

● $450 USD (~SEK 4600, €415) per sensor. 

● Measures data every 2-seconds.

● Programmed only to transmit when a ramp of a certain size is detected.

● Can only transmit 10 data points (20 seconds) every 2 minutes to preserve battery.
● This led to discontinuous “choppy” data.

Final Specifications

Design Requirements
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Sensor Network
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Methodology

• 10 sensor deployed in Kotzebue, Alaska (67° N).

• Centered around 575-kW community PV array.

• Locations based on max distance a cloud could 
travel in 2 minutes.

• Central node near PV array intakes live sensor 
transmissions and uploads them to internet.

• PV production and meteorological data were 
measured on-site at 1-minute resolution.

©2023 Google, INEGI, TMap Mobility

Locations of the 10 sensors deployed around the Kotzebue community PV array.
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Turning the Data into a Forecast
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Methodology

Solar Zenith 
Angle

Wind 
Speed/Direction

Ambient 
Temp.

Measured PV 
Production

2-second with 2-
minute gaps

Sensor 1 
Irradiance

Sensor 2 
Irradiance

Sensor 10 
Irradiance

1-minute 
resolution

A potential 
problem

• This produced a discontinuous data 
set with varied time resolutions.

• Data were resampled and rearranged to 
make a continuous, 1-minute data set.

Data Formatting
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Turning the Data into a Forecast
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Methodology

• Previous works using sensor networks 
typically use one of two types of algorithm:
• Peak Matching
• Wavelet Decomposition

• Both require high-resolution, continuous data 
sets.

• Neural networks have shown promise for PV 
forecasting applications. 
• Very little research into the combination of 

neural networks and sensor networks for PV 
forecasting.

• Able to learn complex relationships in 
between input data fields.

• Better suited to our mismatched data set. 

What model structure to use?

An example of a basic neural network structure.
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Neural Networks
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Methodology

• Specialized for sequential data like 
time series.

• 2 Types:
• Long Short-term Memory (LSTM)
• Gated Recurrent Unit (GRU)

Recurrent 

Convolutional

Dense

• 1-dimensional (Conv1D) commonly 
used in time series forecasting.

• Used to reduce dimensional 
complexity of input data.

• More generic neural network.
• Used to add model processing 

capabilities as needed.

v
v

v

• 8 different models made of 
combinations of these model types.

• 2-minute forecast horizon (𝐻)

http://www.alaska.edu/nondiscrimination


How the Neural Network Models Use the Data
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Methodology

• Models iteratively update their internal parameters in a process called 
“training.”

• Training is repeated until forecast stabilizes.
• Validation data used to stop “overfitting.”
• Due to technical issues, only 71 days of data were available in total.

70% 20% 10%

Training Validation Testing

Input 
Data

PV Production
Wind Speed

Sensor 1

Sensor 10

PV Production
Target 
Data

• Models use a window of input data points at previous 
time steps to try and predict the current time step

http://www.alaska.edu/nondiscrimination


Performance Metrics
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Methodology

Standard Error Metrics Event-based Metrics

• Mean Absolute Error (𝑴𝑨𝑬)
• Mean−Square Error (𝑴𝑺𝑬)
• Root-Mean-Square Error (𝑹𝑴𝑺𝑬)
• 𝒓𝟐

• 𝒔𝒌𝒊𝒍𝒍

• How good are the models at 
detecting individual ramp events? 

• Three useful metrics:
• Precision (𝑷𝑹)
• Recall (𝑹𝑬)
• 𝑭𝜷 (𝜷 = 𝟏 for this analysis)

Persistence model:

• How close are the actual (𝒚) and 
forecasted (ෝ𝒚) time series?

Forecast horizon 
(𝐻)

*Notoriously hard to beat for short time 
horizons 
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Using the Event-based Metrics
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Methodology

What is a ramp?

what about this?

Is this a 
ramp?

surely this
is a ramp…

• There is no standard definition of a “ramp.”
• A common approach is to choose an 

arbitrary threshold difference between 𝑦𝑡
and 𝑦𝑡−1 (or ො𝑦𝑡 and ො𝑦𝑡−1)

• We chose an arbitrary threshold ℎ to define 
minimum ramp size. 
• Units of (% of max PV output per minute).

• Only evaluated downwards ramps.
• In theory, these matter more since you can 

always curtail.

Solution: just say 
a ramp must be at 

least this large:
𝒉
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Model Performance 
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Results

• Once the models were trained, 
10% (7 days) of the data were 
used to generate forecasts for 
analysis.

• A clear systematic lag of 2 
minutes.
• All of the models are 

“learning” to copy 
persistence models.

• This is a commonly observed 
issue in the literature with 
models which use their target 
variable as input.

Forecast horizon 
𝐻 = 2minutes
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Event-based Results
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Results

• Our goal is to detect ramps which could threaten grid stability.
• How big that ramp is (ℎ) is highly dependent on the state of the given grid.

• Only the Conv1D-LSTM model 
structure was able to reliably 
beat a persistence model in 
terms of 𝐹1.

• Less complex models 
performed noticeably worse.

• Performance across all models 
was lacking.

• Small sample size of ramp 
events due to lack of data.
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Standard Error Metric Results
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Results

● nMAE and nMSE values are high compared to 
literature.
● nMAE: 0.04 to 0.15 [5, 6]
● nMSE: 0.02 to 0.20 [3, 7]

● skill values are low compared to literature
○ 0.30 to 0.95 [3]
○ -0.26 to 0.54 [5]
○ -0.05 to 0.20 [8]

● r2 scores are about on-par with literature.

Forecasts from the same 7 test days 
compared using standard error metrics
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Conclusions and Ideas for the Future
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Conclusion

• Using PV production as both input 
and target caused it to dominate 
the forecast.

• The sensors only being able to 
transmit 20 seconds every 2 
minutes caused some ramps to go 
undetected.

• Having only 71 days of data 
potentially limited the capability of 
the models to extract patterns and 
reliably generate forecasts.

Next Steps
Lessions Learned

• Developing sensors which can meet design 
requirements and transmit more frequently.
• Theoretically possible within U.S. FCC radio 

transmission limits.
• Testing peak-matching/wavelet decomposition on 

Kotzebue data.

Peak-matching algorithm [3] used on data from NREL Oahu solar measurement grid [9]
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Questions or Comments?
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