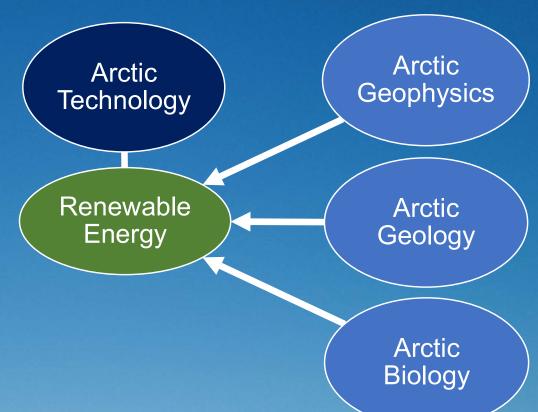


Anna Sjöblom (annac@unis.no)
Professor in Renewable Energy Meteorology


Matthias Henkies, Arthur Garreau, Jules Boulard (UNIS) and Mons Ole Sellevold (Store Norske Energi)

The University Centre in Svalbard (UNIS)

- Ca 60 scientific staff (including Ph.D. students)
- Ca 750 students from 45 different countries
- Year-round presence in the High Arctic

Change in Longyearbyen; From coal to renewable energy

- Coal as an energy source since 1910, ended 19 October 2023
- Now running on diesel
- Gradual transition to renewable energy
- 1,500 other Arctic off-grid societies

Why do we need research on renewable energy in the High Arctic?

- Urgent solutions needed
- Proven solutions specific for the High Arctic do not exist
- Tested elsewhere does not necessarily mean it will work in all of the Arctic
- Errors are expensive: for example, supply failure, economy and nature

What research do we need on renewable energy in the High Arctic?

- Understand the Arctic environment
- Test technology
- Adapt technology
- Implement technology

Local knowledge is the key

UNIS research focus

Wind energy

Solar energy

Geothermal energy

Specific weather for the High Arctic

- Very local weather
- Less is known about High Arctic weather
- Long periods with polar night / midnight sun
- Snow drift / icing
- Weather models and forecasts are more uncertain than at lower latitudes

Adapting solar energy technologies for use in the Arctic

Arthur Garreau, Ph.D. candidate

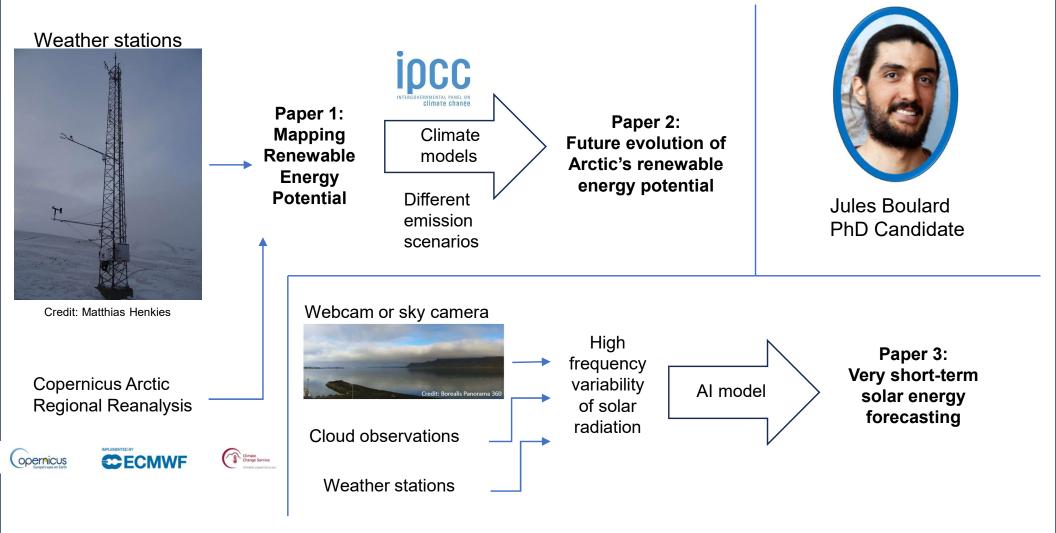
Solar irradiance evaluation

Measurements solar irradiance around Longyearbyen (Paper in preparation)

SW irradiance hor-

Solar PV potential assessment

Evaluating solar PV potential in the High-Arctic setting


Understanding and adapting solar PV for Svalbard and Arctic conditions – Isfjord Radio case

Tests at a larger scale to evaluate panel responses to the Arctic's severe weather, including snowdrifts, icing, and wind

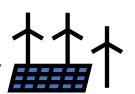
Mapping, utilization and forecasting of renewable energy in the Arctic

Wind climate of High Arctic complex terrain applied to renewable energy

Matthias Henkies

PhD candidate in:

Wind Climate

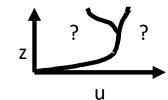


of High-Arctic

Complex Terrain

Applied to
Renewable Energy

Current research topics:


- Thermally-driven winds

Henkies et al. 2023: The Arctic Fjord Breeze

(Bound. Layer Met.)

- Wind profiles

- Low-wind periods

- Snowdrift

World's northernmost ground mounted PV park Isfjord Radio, Svalbard

- 6 rows, 10 m spacing, south facing, 45° tilt
- Installed capacity: 198 kWp (360 panels x 550 Wp)
- Annual production: 168 000 kWh (849 kWh/kWp)
- Construction: 2023
- Owner and operator: Store Norske Energi AS

Photo: A. Garreau, UNIS

Photo: M. O. Sellevold, Store Norske Energi

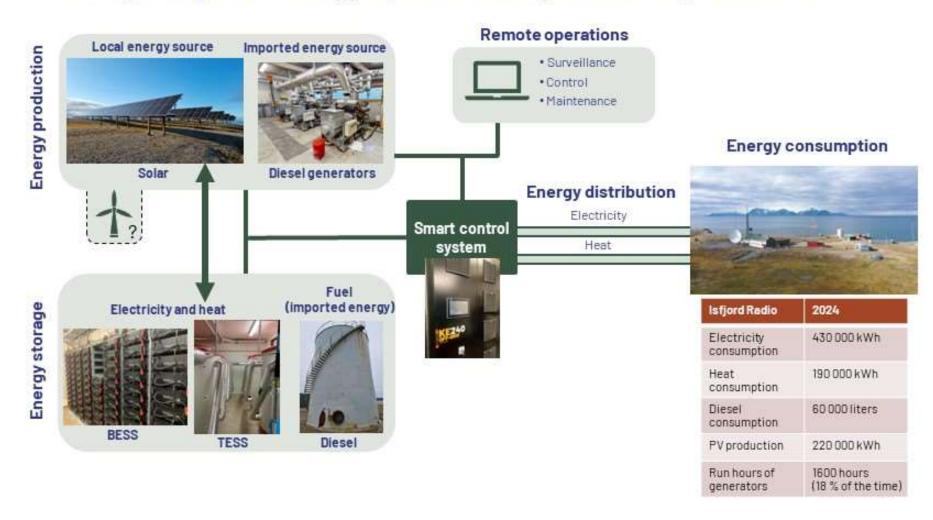
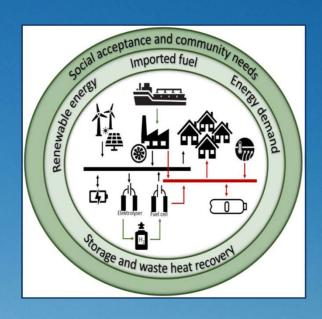


Photo: M. O. Sellevold, Store Norske Energi


Off-grid hybrid energy system at Isfjord Radio, Svalbard

Zero Emission Energy Systems for the Arctic (ZEESA) 2023-2026, RCN + Industry, Ca 20 MNOK

- Thermal-electric integrated energy systems
- Combining meteorological models with field studies
- Investment and design analysis
- Norwegian industry players

https://www.sintef.no/en/projects/2023/zeesa-zero-emission-energy-systems-for-the-arctic/

SVALBARD ENERGI AS

Future plans of UNIS

- Arctic energy research and test centre
- Co-operation with industry: If solutions work in Svalbard, they can be exported to the whole Arctic, "Tested in Svalbard"
- New courses in cold climate renewable energy (M.Sc. and Ph.D.) from autumn 2024
 - AE-341: Sustainable Arctic Energy Exploration and Development
 - AE-342: Arctic Energy Meteorology
 - AE-343: Arctic Renewable Energy Infrastructure: Construction and Operation

Svalbard as a showcase for renewable energy and a sustainable society

Norwegian Prime Minister Jonas Gahr Støre (2023):

"The first pillar of Norway's Arctic policy is the green transition, absolutely key. I see this as an opportunity, a game changer, we are moving from the age of petroleum production to renewable energy production. A lot of that will happen in the north"

