Monitoring DER Integrity using Machine Learning Algorithms on a Single Board Computer
Overview

1. Motivation
2. Experiment Setup
3. Network Sensor
4. Intrusion Detection Analytics
5. Computer Utilization
6. Attack Scenarios
Motivation

U.S. Residential solar PV
• 1.9 Million
• 64.2 GW

PV Inverter Capabilities
• Reactive/real power support
• Voltage Support
• Frequency support
• Ramp rate control

Centralized Control Issues
• Depend on 3rd party infrastructure
• Control signals are susceptible to:
 • Monitoring
 • Modifications
 • Blocking

Mitigation Strategy
• Advanced monitoring and analytics at the grid edge
• Small, cheap single board computers
Experiment Description
Experiment Setup & Procedures

1. Aggregator
 1. Modbus TCP/IP Client
2. Local Area Network Router
 1. Internet Connection
 2. Firewall
 3. Local Area Network Management
3. Network Monitor
 1. Packet Capture
 2. Intrusion Detection
4. Inverter
 1. Modbus TCP/IP Server
Experiment Procedures

1. Send Messages
 1. Modbus TCP/IP Commands

2. Monitor Messages
 1. Capture Packets
 2. Storage Packet Information

3. Perform Analytics
 1. Intrusion Detection Algorithms

4. Evaluate Computer Operations
 1. Packet Capture
 2. Analysis –Training
 3. Analysis –Detection
Network Sensor
Packet Capture & Inspection Tools

1. Python Packages
 1. scapy
 2. pcapy

2. Packet Types
 1. TCP/IP
 2. ICMP (ping)
 3. Address Resolution Protocol (ARP)
 4. Modbus TCP/IP
Packet Storage & Access

1. Database
 a. Influxdb (www.influxdata.com)
 b. Open-Source Time Series
 c. Written in Go
 a. High Availability
 ◦ Storage
 ◦ Retrieval

2. Python Queries
 a. Define Query:
 a. `query = "select * from 'xxx' where time >= now() - 10s"`
 b. Get Data
 a. `df = client.query(query).get_points(measurement='xxx')`

3. Graphical Interface
 a. Grafana (grafana.com)
 b. Open-Source
 c. Graphs numeric time-series data
Intrusion Detection Analytics
Machine Learning Algorithms

1. Adaptive Resonance Theory
 a. Unsupervised Artificial Neural Network
 b. Comparison and recognition layers
 c. https://github.com/cbirkj/art-python

2. One-Class Support Vector Machine
 1. Unsupervised Machine Learning
 2. Creates a multi-dimensional hyperplane

3. Autoencoder
 1. Unsupervised Deep Neural Network
 2. Feedforward, non-recurrent neural network
 3. Implemented using:
 1. Keras
 2. Tensorflow
Computer Utilization
Computer Resources – Network Sensors

1. Random Access Memory
 a. Baseline = ~ 23%
 b. Max = ~40% of total

2. Central Processing Unit (CPU)
 a. Each use ~12%

3. CPU Temperature
 a. Baseline = 49.4°C
 b. Max = 51.5°C
1. Random Access Memory
 a. Min. = \sim 40\% \\
 b. Max = \sim 55\% of total

2. Central Processing Unit (CPU)
 a. Min = \sim 12.4\% \\
 b. Max = 12.7\%

3. CPU Temperature
 a. Min. = 51.5^\circ C \\
 b. Max = 57.3^\circ C
Algorithm Train & Test Time

1. Batch Learning
 1. Learn on entire data set

2. On-Line Learning
 1. Learn when data available in sequential order
 2. Update predictor

3. Experiment used On-Line Learning

4. Adaptive Resonance Theory
 1. Performed well w/ On-Line Learning

5. Support Vector Machine
 1. Fast but hard to learn in on-line learning

6. Autoencoder
 1. Did not perform well
 2. Better with Batch Learning
Intrusion Detection
Network Based Intrusion Detection (Example)

1. Adaptive Resonance Theory
 a. Create hyperboxes around the data
 b. Violations/anomalies when data not inside boxes

2. Example Features
 1. Count - Frequency
 2. Source – IP address where signal originated
 3. Instance – Data point
 4. Value - Value of point
Summary
Conclusion

1. Single Board Computers
 a. Provide Bump-in-the-Wire Monitoring
 b. Capture Packets (multiple types)
 c. Inspect Packets
 d. Store & View Packets
 e. Analyze Packets

2. Sensor
 a. 40% of RAM
 b. 12% CPU
 c. 51.5 °C

3. Intrusion Detection Analytic
 a. Adaptive Resonance Theory
 ◦ Lowest RAM, CPU, and Temp
 ◦ Best on-line learner
Questions