“Tipping Point” Analysis for Coupled Inverter-Machine Systems

Yashen Lin
National Renewable Energy Laboratory
PV Systems Symposium, May 16
Acknowledgement

Brian Johnson
Univ. of Washington

Sairaj Dhople
Univ. of Minnesota

Patrick Chapman
SunPower

Gabsu Seo
NREL
Motivation

Grid-following controls

Present

Future

To next-generation grid-forming controls
1. “Tipping point” analysis
 - Small-signal stability of coupled inverter-machine systems

2. Inverter-dominant microgrid testbed
 - Grid-forming and grid-following
• **A fundamental question:** What happens as the ratio of inverter/machine ratings increases?
• A simple illustrative example system:

- Adjust the ratings of the inverter and machine to represent different inverter penetration level.
Model description: synchronous machine

- Standard machine model [1]:

\[
\begin{align*}
&\text{governor: } \frac{1}{\tau_g s + 1} + P_{\text{agc}} + \frac{1}{\omega} \delta_g \\
&\text{turbine: } \frac{1}{1 + sF_{\text{hp}} Tr} \left(\frac{1}{1 + sT_{\text{ch}}} (1 + sT_{\text{rh}})\right) + P_m + \frac{1}{2Hs + D} \omega
\end{align*}
\]

Frequency Dynamics

Voltage Dynamics

\[
\begin{align*}
\lambda^d i^d - \lambda^q i^q
\end{align*}
\]

\[
\begin{align*}
&\text{voltage controller: } \frac{T_c s + 1}{T_h s + 1} v_C \\
&\text{exciter: } \frac{k_a}{T_a s + 1} v_{C} \\
&\text{field: } \frac{v_{fd}}{T_a s + 1} v_{fd}
\end{align*}
\]

\[
\begin{align*}
&\lambda_{fd} = \lambda_{\text{nom}} (v_{fd} - r_{fd} i_{fd}) \\
&i_{fd} = \frac{\lambda_{fd} + L_{a,fd} i_{fd}}{L_{fd,fd}} \\
&\lambda^d = -L_d i^d + L_{a,fd} i_{fd} \\
&\lambda^q = -L_q i^q \\
&v^d = -\lambda^q - \tau_a i^d \\
&v^q = \lambda^d - \tau_a i^q
\end{align*}
\]

Model description: inverter

- Grid-following: synchronize to grid voltage reference
- Grid-forming: generate voltage autonomously

Grid-following inverter control
Grid-following inverter control: virtual oscillator controller (VOC)
Objective: obtain scalable model to represent a collection of inverters.

We showed that if the control and physical parameters of each inverter in a parallel system adhere to a set of scaling laws, then the output current of a multi-inverter system can be modeled exactly with one aggregated equivalent inverter model.

Results for grid-following case

- Instability at approximately 50%
- Result varies between 40%-90%, depends on parameters

• Which subsystems impact on the “tipping point” most heavily?
• Sensitivity analysis of the following subsystems:
 o Machine automatic voltage regulator (AVR) and excitation system
 o Inverter current controller
 o Inverter PLL
 o Machine mechanical inertia

Bypass AVR and excitation

Different current controller gain
Instability at approximately 50% in default case

The “tipping point” depends on the system parameters
- Reactive power droop slope plays a significant role
- System stability can be improved when parameters are chosen carefully
Multi-machine multi-inverter case

- IEEE 39-bus test system resembles the New England system.
- There are 10 generator/inverter buses.
- Approach: Sweep penetration level by replacing machine one-at-a-time with inverter of identical rating.
Multi-machine multi-inverter case

- Preliminary results are consistent with the single machine single inverter case.
Take home message

- Coupled inverter-machine system may become small-signal unstable when we increase the inverter penetration level.

- The “tipping point” where the system becomes unstable depends on system parameters.

- Grid-forming inverter can potentially improve the stability of the system.
Inverter-dominant microgrid testbed
Inverter-dominant microgrid testbed

- Micro-inverter from SunPower (320 W, 240 Vrms)
- 10 grid-forming inverter + 10 Grid-following controlled inverter
Inverter-dominant microgrid testbed
Test procedure

• Demonstrate feasibility of heterogeneous system with VOC & Grid-following inverters:
 o Black start with VOC inverters and load sharing
 o Cooperation with grid-following inverters
 o Load transients: resistive load and reactive load
Test procedure
Step 1: black start

- Successful Black Start by Grid Forming Inverters under 250W condition
 - Black Start
 - Dynamic Load Sharing
Step 2: load step change

- Load transient from 250W to 750W with five inverters sharing the load
 - Dynamic Load Sharing
 - Transient Voltage Regulation
Step 3: adding grid-following inverters

- Power Generation of Grid-Following Inverters
 - Grid Regulation under Grid-Following inverter operations
 - Compatibility with Grid Following Inverters
 - Tight Grid Voltage Regulation
Take home message

- Testbed with both grid-following and grid-forming inverters.
- VOC inverters are able to regulate the output voltage.
- VOC inverters are able to black start the system.
- Multiple VOC inverters can dynamically share loads.
- VOC inverters work well when connected with grid-following inverters.
Thank you!

www.nrel.gov
Demo: Step 1

- Successful Black Start by Grid Forming Inverters under 250W condition
 - Black Start
 - Dynamic Load Sharing
Demo: Step 2

- Load transient from 250W to 750W with five inverters sharing the load
 - Dynamic Load Sharing
 - Transient Voltage Regulation
Demo: Step 3

- Power Generation of Grid-Following Inverters
 - Grid Regulation under Grid-Following inverter operations
 - Compatibility with Grid Following Inverters
 - Tight Grid Voltage Regulation
Demo: Step 4

- Load Step form 750W to 1750W with 5 GFM MIs and 5 GFL MIs generating 500W
 - Grid Voltage Regulated by GFM MIs
Demo: Step 5

- GFL Inverter Power Gen Increase to 200W
 - Grid Voltage Regulated by GFM MIs
Demo: Step 6

- 10uF Capacitive Load Turn on (Load Voltage Compensation Simulation)
 - Reactive Power Transient Covered By GFM
Demo: Step 7

- GFM Inverters 6-10 Turned on to join
 ✔ Successful Synchronization between GFM Inverters + Load Sharing
Demo: Step 8

- GFL Inverters 16-20 Generate 250W
 - GFM Inverters Continue to Regulate Grid Voltage by Adjusting Their Power Generations Depending on the Load.