About Daly

- Founded in 2021
- San Francisco, CA + Chernivtsi, Ukraine
- API released May 2022
- Platform launch September 2022
- Independent engineer assessment underway
- 5 full time engineers
Daly is simplifying and improving solar + storage modeling

Utilize industry accepted and financible physical models

With advanced software functionality and capabilities

To provide the next generation in solar and storage modeling
Offering

Web Interface
Collaborative workspaces designed to simplify and automate modeling work

API
Access entire platform through REST API for custom functionality and workflow automation

Third Party or Custom Software
Use Daly in other software platforms or integrate it directly into your in-house software and tools
Daly Technical Overview

Daly **Solar** Modeling Platform
Solar yield calculated using the most financed and accepted models
- Industry standard models
- Utilizes .PAN and .OND file formats
- Octavia near shading model

Daly **Storage** Modeling Platform
Energy storage techno-economic modeling built for PV+S or standalone
- Cell-to-site level model
- Automated or manual dispatch algorithms
- Unique interaction with solar output
Near Shading Engine

Unlimited
2D Near Shading Engine

- Analogous to ‘unlimited’ sheds or trackers
- Simple inputs and usage
- Simulated at energy model run time
- Electrical impact optional
- No separate object management

Octavia
3D Near Shading Engine

- Complex 3D shading calculations
- Diode protected areas in 3D
- Terrain-aware tracking algorithm
- Import shading scenes from SHD files, JSON exports from PVComplete, .PVC files,
Terrain-Aware Tracking

- Octavia analyzes tables individually to determine backtracking angles
- Diffuse and direct irradiance adjustments made on hourly basis for every table
- Can reference module architecture to determine optimal backtracking angles
Transverse Diodes

- Divides table into diode sensitive areas
- Same input for 2D and 3D
- Informs Terrain-Aware tracking
- Used in electrical loss calculations
Octavia API Workflow

Step 1

api.dalyenergy.com/octavia/upload

POST Upload file with tracker inputs if tracker system

Step 2

api.dalyenergy.com/octavia/status

GET Check status of processing

Step 3

api.dalyenergy.com/epm/run

Reference ‘shadingSceneld’ in energy production model inputs
Example Project
Base Case Simulations

Unlimited
2D Near Shading Engine

2099 kWh/kWp
PVSYST: 2100 kWh/kWp

Octavia
3D Near Shading Engine

1911 kWh/kWp
PVSYST: 1904 kWh/kWp
Terrain Aware Tracking Improvement

Standard (Flat) Backtracking
Full-Cell Module

1911 kWh/kWp

Terrain-Aware Backtracking
Full-Cell Module

2054 kWh/kWp
+7.48% Gain
Impact of Half Cells

Standard (Flat) Backtracking
Full-Cell Module

1911 kWh/kWp

Terrain-Aware Backtracking
Full-Cell Module

2054 kWh/kWp
+7.48% Gain

Half-Cell Module

1972 kWh/kWp
+3.19% Gain

Terrain-Aware Backtracking
Half-Cell Module

2061 kWh/kWp
+7.84% Gain From Full-Cell
+4.5% Gain From Half-Cell
Are we missing anything?

Do Terrain-Aware tracking strategies change with Half-Cells?
Half-Cell Specific Terrain Aware Tracking

<table>
<thead>
<tr>
<th>Description</th>
<th>kWh/kWp</th>
<th>Gain/Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Terrain-Aware Tracking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard (Flat) Backtracking Half-Cell Module</td>
<td>1972</td>
<td></td>
</tr>
<tr>
<td>Terrain-Aware Backtracking Half-Cell Module</td>
<td>2061</td>
<td>+4.5% Gain</td>
</tr>
<tr>
<td>Half-Cell Specific Terrain-Aware</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard (Flat) Backtracking Half-Cell Module</td>
<td>1972</td>
<td></td>
</tr>
<tr>
<td>Terrain-Aware Backtracking Half-Cell Module</td>
<td>1957</td>
<td>-0.7% Loss</td>
</tr>
</tbody>
</table>
Appendix
Positioning + Value Proposition

Fast
>90% Reduction in time to run

Automatable
Easily automate work and integrate yield modeling into any process

Reliable
 Produces results within +/- 0.05% of industry accepted models

Innovative
 Developing needed improvements to the modeling space
Daly Solar Platform

```json
{
  "String Length": 29,
  "Number of Strings": 322.0,
  "DC Wp": 3501750.0,
  "AC Wp": 2500000.0,
  "DCACRatio Actual": 1.4007,
  "Wh": 7322108455.74602,
  "Specific Yield": 2090.9854
}
```

Daly API
Production Modeling API

- Industry leading modeling engine
- Simple inputs and usage
- Block-to-plant level energy model
- Third party review underway

Octavia
3D Near Shading API

- Cloud based near shading model
- Terrain based tracking
- Third party reviewed
- 4 modes of electrical loss calculation

Daly Interface
Production Modeling Web Interface

- User friendly and collaborative
- Unlimited users and projects
- PDF report generation
- Custom branding & functionality
Daly Interface

- Web based interface
- Workspaces with user roles
- Create and manage production runs as well as modules, inverters, and locations databases
- PDF report generation (Q3 22)
- Assumption and workflow automation