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Context Features extracted from panoramic sky images via an infrared camera assisted in intra-hour The software’s microservice design integrated forecasting, power production, penalties, and
ontex solarirradiance estimation and cloud movement tracking. Images were classified as cloudy using derived motion wind for modularity.
Solar PV plants must maintain supply within a tolerance to avoid penalties. Solar irradiance statistical thresholds (average <40%, standard deviation 50%, bright pixels <1%).
forecasts improve the reliability of expected power generation and its integration into the op- 2l manager o oy S =]
gl’ld. .. Normalized and color mapped Brightness 0 Last image in set v 7 L D ’
Main ObjeCﬁve I18000 Forec;fscirzcrﬁftl\)l)letrici{l Pow:atrO gz\zz:;tion{l I;:na::h?:s {l DeriveJ<gMO:§;n Win;EI
100 L 17500 100
To build an intraday solar irradiance forecast model and a resource-to-power generation
model for Enel Colombia’s El Paso solar PV plant (86.2 MWp), incorporating operational and 17000 storager
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meteorological information, GOES satellite data, and sky camera images.
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Up to what forecast horizon does the issued data maintain an acceptable confidence interval? 15000 400
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* Implement an intraday solar irradiance forecast estimation model. Figure 3. Sky image with color mapping and normalized (left); Image segmentation and tracked trajectories (right). 5 vy S F\ |-c- owo rcon Gaba
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Develop an expert system to evaluate KPIs and support market decision-making. GOES Cloud and Moisture Imagery (CMI) was used with GHI correlations analyzed to enhance < 2y ,

forecasting accuracy. p
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Figure 7. Operational analytics to support market decision making; the red marker indicate the periods in which

We developed a solar irradiance forecast model (LSTM, Bi-LSTM, Transformer) using two years 0.08
energy deviation leads to an financial penalty, and the green marker otherwise.

of meteorological data (from Feb/2022 to Mar/2024) at a 10-minute resolution, forecasting 36
time steps ahead.
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Bayesian optimization fine-tuned hyperparameters to efficiently minimize the loss function, pre-
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venting overfitting and enhancing irradiance prediction accuracy. . " — — e ——
The inputs included GHI, ambient temperature, wind speed/direction, atmospheric pressure, the 000 P
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and AC energy generation.
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[ ® ° Figure 5. AC power correlation (left); Cumulative distribution function comparison (right). = The combination of satellite and sky camera data improved short-term cloud prediction.
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Figure 2. Forecasted solar irradiance (left); Correlation between measured and forecasted irradiance (right). 098 4.6 48 01 05 10 338 0O 64 40 costs.
= The expert system facilitated penalty avoidance by estimating forecasts, production, and
Table 1. Distance, statistical, variability, and production metrics in units of %. cloud conditions under operational scenarios.
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