• PVPMC Blog
  • PV_LIB Toolbox
  • Events and Workshops
  • Contact Us
Header Menu
PV Performance Modeling Collaborative
PV Performance Modeling Collaborative
An Industry and National Laboratory collaborative to improve Photovoltaic Performance Modeling
An Industry and National Laboratory collaborative to Improve Photovoltaic Performance Modeling
  • Home
  • Modeling Steps
    • 1. Weather and Design
      • Sun Position
      • Irradiance & Insolation
      • Weather Observations
      • Array Orientation
      • Plane of Array (POA) Irradiance
      • Shading, Soiling, and Reflection Losses
    • 2. DC Module IV Characteristics
      • Module Temperature
      • Cell Temperature
      • Effective Irradiance
      • Single Diode Equivalent Circuit Models
      • Point-value models
    • 3. DC Array IV
      • Mismatch Losses
      • DC Component Health
      • DC Wiring Losses
      • Array Utilization
    • 4. DC to AC Conversion
      • CEC Inverter Test Protocol
      • Operating Temperature
      • Sandia Inverter Model
      • Driesse Inverter Model
      • Inverter Saturation or “Clipping”
      • Loss of Grid
      • Advanced Inverter Features
    • 5. AC System Output
      • AC Wiring Losses
      • PV Performance Metrics
  • PV Research Projects
    • Bifacial PV Project
      • Outdoor Bifacial PV Performance Data
        • Field Example of Bifacial Gain at Sandia
      • Bifacial PV Characterization and Rating Standards
      • Bifacial PV Performance Models
        • Ray Tracing Models for Backside Irradiance
          • RADIANCE models
          • COMSOL models
        • View Factor Models
          • Sandia View Factor Model Implementation
          • NREL View Factor Model Implementation
    • PV Lifetime Project
      • PV Lifetime Modules
      • PV Lifetime Field Deployments
      • Indoor Module Flash Testing
      • PV Degradation Modeling
  • Applications & Tools
    • PV_LIB Toolbox
    • GridPV Toolbox
    • Wavelet Variability Model
      • WVM Square Plant Example
      • Polygon Vertices to Define Plant Footprint Example
      • WVM Discrete Point Example
    • Solar Variability Zones
    • Spectral irradiance dataset from Albuquerque
  • Resources and Events
    • Events and Workshops
    • PVPMC Blog
    • Sign up for Email Newsletter
    • IEA PVPS Task 13 Reports
    • 2021 Blind PV Modeling Comparison
MENU CLOSE back  

NREL View Factor Model Implementation

You are here:
  1. Home
  2. PV Research Projects
  3. Bifacial PV Project
  4. Bifacial PV Performance Models
  5. Ray Tracing Models for Backside Irradiance
  6. View Factor Models
  7. NREL View Factor Model Implementation

NREL has formulated an array-scale model which assumes edge effects are not significant with respect to the overall energy production for large PV arrays. The figure illustrates the components of irradiance considered in the array scale model which include: sky diffuse irradiance from the visible wedge of the sky accounting for circumsolar, horizon and rest-of-sky diffuse irradiance; ground reflected irradiance accounting for shading of the ground by the array; and reflected irradiance from the front surface of adjacent rows. The array scale model can estimate variation in back surface irradiance along the vertical dimension of a module, but not along its lateral dimension.

NREL_View_Factor_Model

PVPMC
  • PVPMC Home
  • Modeling Steps
  • PV Research Projects
  • Applications & Tools
Recent Posts
  • Call for Abstracts for the 2023 PVPMC Workshop – Due March 6, 2023
    January 26, 2023
  • Save-the-Date for the 2023 PV Performance Modeling Collaborative Workshop – May 9-10 in Salt Lake City, UT.
    December 15, 2022
  • Registration Open for 2022 PV Performance Modeling Workshop
    May 27, 2022
Word Cloud
Irradiance Sensors Photon SAND2014-17810 W SAND2014-19827 W SAND2015-9872E SAND2016-0054 W SAND2016-0054W SAND2016-2333 W SAND2016-10263 W SAND2019-15366 W SAND2021-7933 S Sandia
Sign up for our email newsletter
Click to subscribe
PV Performance Modeling Collaborative
  • PVPMC Home
  • Modeling Steps
  • PV Research Projects
  • Applications & Tools
Footer Links

© 2018 National Technology and Engineering Solutions of Sandia, LLC.
Questions & Comments | Privacy & Security

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.