POA Ground Reflected

Irradiance on a tilted surface that is reflected off the ground, $$E_g$$ , is calculated as a function of the irradiance on the ground, usually assumed to be $$GHI$$, the reflectivity of the ground surface, known as albedo, and the tilt angle of the surface, $$\theta_{T},{surf}$$ :

$$E_{g}=GHI\times albedo\times\frac{\left(1-\cos\left(\theta_{T},{surf}\right)\right)}{2}$$

<!-- wp:heading --><h2>Thursday, October 22, 2015</h2><!-- /wp:heading --><!-- wp:table --><figure class="wp-block-table"><table><tbody><tr><td><a href="http://www.slideshare.net/sandiaecis/01-florian-reilintroduction" target="_blank" rel="noreferrer noopener">Opening</a></td><td>Florian Reil</td><td>TÜV Rheinland, Solar Energy</td></tr><tr><td><a href="http://www.slideshare.net/sandiaecis/02-stein-intro4thpvmodelingworkshop20151022sand20158571c" target="_blank" rel="noreferrer noopener">Welcome and Introduction</a></td><td>Joshua Stein</td><td><a href="http://pv.sandia.gov/" target="_blank" rel="noreferrer noopener">Sandia National Laboratories</a></td></tr></tbody></table></figure><!-- /wp:table --><!-- wp:heading {"level":3} --><h3>Solar Resource Data and Uncertainty</h3><!-- /wp:heading --><!-- wp:paragraph --><p>Chaired by Clifford Hansen, Sandia National Laboratories</p><!-- /wp:paragraph --><!-- wp:table --><figure class="wp-block-table"><table><tbody><tr><td><a href="http://www.slideshare.net/sandiaecis/11-schroedter-homscheidtsatelliteandcamera-56352553" target="_blank" rel="noreferrer noopener">Satellite- and Camera-derived Irradiance Data for Applications in Low Voltage Grids with Large PV Shares</a></td><td>Marion Schroedter-Homscheidt</td><td>German Aerospace Center (DLR)</td></tr><tr><td><a href="http://www.slideshare.net/sandiaecis/12-karel-debrabandereevaluationofsatelliteirradiationdataat200sites" target="_blank" rel="noreferrer noopener">Evaluation of Satellite Irradiation Data at 200 Sites in Western Europe</a></td><td>Karel De Brabandere</td><td>3E</td></tr><tr><td><a href="http://www.slideshare.net/sandiaecis/13-marcel-surisolarresourceuncertainty" target="_blank" rel="noreferrer noopener">Uncertainty of Satellite Based and Ground Based Solar Resource Assessment</a></td><td>Marcel Suri</td><td>GeoModel Solar s.r.o.</td></tr><tr><td><a href="http://www.slideshare.net/sandiaecis/14-jan-remundaccuracyofmeteonorm7" target="_blank" rel="noreferrer noopener">Accuracy of Meteonorm 7.1</a></td><td>Jan Remund</td><td>Meteotest</td></tr><tr><td><a href="http://www.slideshare.net/sandiaecis/15-sengupta-nextgenerationsatellitemodelling" target="_blank" rel="noreferrer noopener">Next-Generation Satellite Modelling for NREL’s National Solar Radiation Data Base (NSRDB)</a></td><td>Manajit Sengupta</td><td>National Renewable Energy Laboratory</td></tr><tr><td><a href="http://www.slideshare.net/sandiaecis/16-lorenz-localandregionalpvpower" target="_blank" rel="noreferrer noopener">Local and Regional PV Power Forecasting Based on PV Measurements, Satellite Data and Numerical Weather Predictions</a></td><td>Elke Lorenz</td><td>Carl von Ossietzky University Oldenburg</td></tr><tr><td><a href="http://www.slideshare.net/sandiaecis/18-driesse-dynamicuncertaintyofirradiancemeasurementsillustrationsfromastudyof42radiometers" target="_blank" rel="noreferrer noopener">Dynamic Uncertainty of Irradiance Measurements – Illustrations from a Study of 42 Radiometers</a></td><td>Anton Driesse</td><td>PV Performance Labs</td></tr><tr><td><a href="http://www.slideshare.net/sandiaecis/19-winter-towardsanenergybasedparameterforphotovoltaicclassification" target="_blank" rel="noreferrer noopener">Towards an Energy-based Parameter for Photovoltaic Classification</a></td><td>Stefan Winter</td><td>Physikalisch-Technische Bundesanstalt</td></tr><tr><td><a href="http://www.slideshare.net/sandiaecis/20-bethke-hammertimeseriesofspectrallyresolvedsolarirradiancedatafromsatellitemeasurements" target="_blank" rel="noreferrer noopener">Timeseries of Spectrally Resolved Solar Irradiance Data from Satellite Measurements</a></td><td>Annette Hammer</td><td>Carl von Ossietzky University Oldenburg</td></tr></tbody></table></figure><!-- /wp:table --><!-- wp:heading {"level":3} --><h3>Spectral Corrections for PV Performance Modeling</h3><!-- /wp:heading --><!-- wp:paragraph --><p>Chaired by Alex Panchula, First Solar</p><!-- /wp:paragraph --><!-- wp:table --><figure class="wp-block-table"><table><tbody><tr><td><a href="http://www.slideshare.net/sandiaecis/21-thomas-huldsatellitebasedestimates" target="_blank" rel="noreferrer noopener">Satellite-based Estimates of the Influence of Solar Spectrum Variations on PV Performance</a></td><td>Thomas Huld</td><td>Joint Research Centre of the European Commission</td></tr><tr><td><a href="http://www.slideshare.net/sandiaecis/22-mitchell-leeamandpwatspectralcorrection" target="_blank" rel="noreferrer noopener">Combined Air Mass and Precipitable Water Spectral Correction for PV Modelling</a></td><td>Mitchell Lee</td><td>First Solar</td></tr><tr><td><a href="http://www.slideshare.net/sandiaecis/23-g-belluardosensitivityanalysisanduncertaintyevaluationofsimulatedclearskysolarspectra">Sensitivity Analysis and Uncertainty Evaluation of Simulated Clear-Sky Solar Spectra Using Montecarlo Approach</a></td><td>Giorgio Belluardo</td><td>EURAC research</td></tr><tr><td><a href="http://www.slideshare.net/sandiaecis/24-mavromatakis-vignolaspectralcorrectionsforpvperformancemodelling" target="_blank" rel="noreferrer noopener">Spectral Corrections for PV Performance Modelling</a></td><td>Fotis Mavromatakis</td><td>Technological Education Institute of Crete</td></tr><tr><td><a href="http://www.slideshare.net/sandiaecis/25-ben-duckimprovedpredictionofsitespectralimpact">Improved Prediction of Site Spectral Impact</a></td><td>Benjamin Duck</td><td>CSIRO Energy Flagship</td></tr><tr><td><a href="http://www.slideshare.net/sandiaecis/26-schweiger-impactofspectralirradianceonenergyyield">Impact of Spectral Irradiance on Energy Yield of PV Modules Measured in Different Climates</a></td><td>Markus Schweiger</td><td>TÜV Rheinland, Solar Energy</td></tr></tbody></table></figure><!-- /wp:table --><!-- wp:heading {"level":3} --><h3>Soiling and Snow, and Other System Derates</h3><!-- /wp:heading --><!-- wp:paragraph --><p>Chaired by Ulrike Jahn, TÜV Rheinland</p><!-- /wp:paragraph --><!-- wp:table --><figure class="wp-block-table"><table><tbody><tr><td><a href="http://www.slideshare.net/sandiaecis/31-werner-herrmannimpactofsoiling" target="_blank" rel="noreferrer noopener">Impact of Soiling on PV Module Performance for Various Climates</a></td><td>Werner Herrmann</td><td>TÜV Rheinland, Solar Energy</td></tr><tr><td><a href="http://www.slideshare.net/sandiaecis/32-king-overviewofsandiassoilingprogram" target="_blank" rel="noreferrer noopener">Overview of Sandia’s Soiling Program: Description of Experimental Methods and Framework for a Quantitative Soiling Model</a></td><td>Bruce H. King</td><td>Sandia National Laboratories</td></tr><tr><td><a href="http://www.slideshare.net/sandiaecis/33-freeman-modellingenergylossesduetosnowonpvsystems" target="_blank" rel="noreferrer noopener">Validation of Models for Energy Losses due to Snowfall on PV Systems</a></td><td>Janine Freeman</td><td>National Renewable Energy Laboratory</td></tr></tbody></table></figure><!-- /wp:table --><!-- wp:heading --><h2>Friday, October 23, 2015</h2><!-- /wp:heading --><!-- wp:heading {"level":3} --><h3>Bifacial PV Modeling Challenges</h3><!-- /wp:heading --><!-- wp:paragraph --><p>Chaired by Theresa Zhang, SunEdison</p><!-- /wp:paragraph --><!-- wp:table --><figure class="wp-block-table"><table><tbody><tr><td><a href="http://www.slideshare.net/sandiaecis/40-zhang-bificialmoduleoverview" target="_blank" rel="noreferrer noopener">Introduction to Bifacial Modeling Challenges</a></td><td>Teresa Zhang</td><td>SunEdison</td></tr><tr><td><a href="http://www.slideshare.net/sandiaecis/41-corbellini-analysisandmodellingofbifacialpvmodules" target="_blank" rel="noreferrer noopener">Simulation and Validation of Modelling of Bifacial Photovoltaic Modules</a></td><td>Gianluca Corbellini</td><td>SUPSI</td></tr><tr><td><a href="http://www.slideshare.net/sandiaecis/42-reise-realisticyieldexpectationsforbifacialpvsystems-56350717" target="_blank" rel="noreferrer noopener">Realistic Yield Expectations for Bifacial PV Systems – am Assessment of Announced, Predicted and Observed Benefits</a></td><td>Christian Reise</td><td>Fraunhofer-Institut für Solare Energiesysteme ISE</td></tr><tr><td><a href="http://www.slideshare.net/sandiaecis/43-hendrik-holstmodellingoftheexpectedyearlypoweryieldonbuildingfacadesinurbanregionsbymeansofraytracing" target="_blank" rel="noreferrer noopener">Modelling of the Expected Yearly Power Yield on Building Facades in Urban Regions by Means of Ray Tracing</a></td><td>Hendrik Holst</td><td>Institut für Solarenergieforschung GmbH</td></tr><tr><td><a href="http://www.slideshare.net/sandiaecis/44-castillo-aguilellamultiyearstudyofbifacialenergygains" target="_blank" rel="noreferrer noopener">Multi-Year Study of Bifacial Energy Gains Under Various Field Conditions</a></td><td>Jose E. Castillo-Aguilella</td><td>Prism Solar Technologies, Inc.</td></tr></tbody></table></figure><!-- /wp:table --><!-- wp:heading {"level":3} --><h3>PV Modeling Applications: Modeling Tool Updates</h3><!-- /wp:heading --><!-- wp:paragraph --><p>Chaired by Jeffrey Newmiller, DNV GL</p><!-- /wp:paragraph --><!-- wp:table --><figure class="wp-block-table"><table><tbody><tr><td><a href="http://www.slideshare.net/sandiaecis/51-b-wittmerlatestfeaturesofpvsyst" target="_blank" rel="noreferrer noopener">Latest Features of Pvsyst</a></td><td>Bruno Wittmer</td><td>Pvsyst</td></tr><tr><td><a href="http://www.slideshare.net/sandiaecis/52-cebecauer-pvspotpvsimulationtoolforoperationalpvprojects" target="_blank" rel="noreferrer noopener">pvSpot – PV Simulation Tool for Operational PV Projects</a></td><td>Tomas Cebecauer</td><td>GeoModel Solar s.r.o.</td></tr><tr><td><a href="http://www.slideshare.net/sandiaecis/53-aron-pdobosrecentandplannedimprovementstothesystemadvisormodelsam" target="_blank" rel="noreferrer noopener">Recent and Planned Improvements to the System Advisor Model (SAM)</a></td><td>Aron P. Dobos</td><td>National Renewable Energy Laboratory</td></tr><tr><td><a href="http://www.slideshare.net/sandiaecis/54-paul-gibbshelioscope" target="_blank" rel="noreferrer noopener">Helioscope</a></td><td>Paul Gibbs</td><td>Folsom Labs</td></tr><tr><td><a href="http://www.slideshare.net/sandiaecis/55-reinders-performancemodellingofpvsystemsinavirtualenvironment" target="_blank" rel="noreferrer noopener">Performance Modelling of PV Systems in a Virtual Environment</a></td><td>Angèle Reinders</td><td>University of Twente</td></tr></tbody></table></figure><!-- /wp:table --><!-- wp:heading {"level":3} --><h3>Field Monitoring and Validation of PV Performance</h3><!-- /wp:heading --><!-- wp:paragraph --><p>Chaired by Werner Knaupp, PV-plan</p><!-- /wp:paragraph --><!-- wp:table --><figure class="wp-block-table"><table><tbody><tr><td><a href="http://www.slideshare.net/sandiaecis/61-boyd-highspeedmonitoring" target="_blank" rel="noreferrer noopener">High-Speed Monitoring of Multiple Grid-Tied PV Array Configurations</a></td><td>Matthew Boyd</td><td>NIST</td></tr><tr><td><a href="http://www.slideshare.net/sandiaecis/62-friesen-fielddatarequirementsforthevalidationofpvmoduleperformancemodels" target="_blank" rel="noreferrer noopener">Field Data from Different Climates for the Validation of Module Performance Models</a></td><td>Gabi Friesen</td><td>SUPSI</td></tr><tr><td><a href="http://www.slideshare.net/sandiaecis/63-matthiss-comparisonofpvsystemandirradiationmodels" target="_blank" rel="noreferrer noopener">Comparison and Validation of PV System and Irradiance Models</a></td><td>Benjamin Matthiss</td><td>ZSW</td></tr><tr><td><a href="http://www.slideshare.net/sandiaecis/64-ransome-thebestpvmodeldependsonthereasonformodelling" target="_blank" rel="noreferrer noopener">The “best” PV Model Depends on the Reason for Modelling</a></td><td>Steve Ransome</td><td>SRCL UK</td></tr><tr><td><a href="http://www.slideshare.net/sandiaecis/65-sutterlueti-usingadvancedpvandbosmodellingandalgorithmstooptimizetheperformanceoflargescaleutilityappl" target="_blank" rel="noreferrer noopener">Using Advanced PV and BoS Modelling and Algorithms to Optimize the Performance of Large Scale Utility Applications</a></td><td>Jürgen Sutterlueti</td><td>Gantner Instruments (GI)</td></tr><tr><td><a href="http://www.slideshare.net/sandiaecis/66-ueda-systemperformanceanddegradationanalysisofdifferentpvtechnologies" target="_blank" rel="noreferrer noopener">System Performance and Degradation Analysis of Different PV Technologies</a></td><td>Yuzuru Ueda</td><td>Tokyo University of Science</td></tr></tbody></table></figure><!-- /wp:table --><!-- wp:image {"id":1368,"sizeSlug":"large","linkDestination":"media"} --><figure class="wp-block-image size-large"><a href="https://pvpmc.sandia.gov/app/uploads/sites/243/2022/10/4thWorkshop_Audience.jpeg"><img src="https://pvpmc.sandia.gov/app/uploads/sites/243/2022/10/4thWorkshop_Audience-1024x678.jpeg" alt="Participants at the 4th PV Performance and Monitoring Workshop in Cologne, Germany." class="wp-image-1368" /></a><figcaption>Participants at the 4th PV Performance and Monitoring Workshop in Cologne, Germany.</figcaption></figure><!-- /wp:image -->

The model for ground reflected irradiance $$E_g$$ develops from the following assumptions:

  1. The array is infinitely long.
  2. Irradiance on the ground is uniform and equal to $$GHI$$, i.e., horizon blocking and near-field shading by the array is ignored.
  3. Irradiance reflects from the ground equally in all directions, i.e., the ground is a diffuse or Lambertian reflector.
  4. The ground is visible to the array from the point of intersection of the array’s slope projected to the ground, to the infinite horizon.

With these assumptions the model for $$E_g$$ can be derived using a view or configuration factor. The view factor quantifies the fraction of diffuse reflected irradiance from one surface $$A_1$$ that impinges on a second surface $$A_2$$. In the equation above for $$E_g$$, the term $$\frac{1-cos{\theta_{T,surf}}}{2}=F_{A_1\rightarrow A_2}$$ is the view factor from surface $$A_1$$, the ground, to surface $$A_2$$, the module.

To derive this model, consider an infinite strip $$dA_1$$ on the ground of differential width  $$dx$$ that is parallel to the array. Denote the array’s face as $$A_2$$, and the view factor from $$dA_1$$ to $$A_2$$  as $$F_{dA_{1}\rightarrow A_2}$$. The irradiance per unit length (W / m) reflecting from the strip $$dA_1$$ is $$GHI\times albedo\times dx$$.  The contribution to irradiance per unit length (W / m) on $$A_2$$ from reflected irradiance from $$dA_1$$ is

$$dE_{g}=GHI\times albedo\times F_{dA_{1}\rightarrow A_{2}}\times dx$$

Let $$x$$ be a coordinate axis on the ground with origin under the lower, forward edge of the array, parallel to the rear-facing normal vector to the array, with negative direction toward the horizon behind the array. Consider $$A_1$$ to be the half-plane on the ground defined by $$x\leq x_0$$,  and $$A_2$$  to be the rear-facing side of an infinitely long strip of width $$L$$ above the half plane with edges parallel to the ground. The total irradiance on $$A_2$$ per unit area (W/m2) from irradiance reflected from $$A_1$$ is

$$\begin{align}E_g & = \frac{1}{A_2}\int dE_g =\frac{1}{L_2}\int{-\infty}^{x_0}GHI \times albedo\times F_{dA_1\rightarrow A_2}dx \\ & =GHI \times albedo \times \int_{-\infty}^{x_0}\frac{F_{dA_1\rightarrow A_2}}{L_2}dx \\ & = GHI \times albedo \times F_{A_1\rightarrow A_2} \end{align}$$

Image of PVPMC_GRI_A1A2_fig-768x458-1

The view factor $$F_{dx \rightarrow A_2}$$ is given by the formula

$$F_{dA_{1} \rightarrow A_2} = \frac{1}{2} \left( \sin \left( \phi_2 \right) – \sin \left( \phi_1 \right) \right) $$

Image of B-71fig
( see case B-71 at http://www.thermalradiation.net/tablecon.html)

Rewriting the terms in the equation for $$F_{dA_{1} \rightarrow A_2}$$ as

$$\sin \phi_2 = \cos \left(90 – \phi_2 \right) = \frac {x-h \cot \theta_{T,surf}}{\sqrt{\left(x – h \cot \theta_{T,surf} \right) ^2 + h^2}}$$

$$\sin \phi_1 = \cos \left(90 – \phi_1 \right) = \frac{x – h \cot \theta_{T,surf} – L_2 \cos \theta_{T,surf}}{\sqrt{\left(x – h \cot \theta_{T,surf} – L_2 \cos \theta_{T,surf} \right)^2 +\left(L_2 \sin \theta_{T,surf} + h \right)^2}}$$

Substituting and evaluating the integral $$F_{A_1 \rightarrow A_2} = \int_{-\infty}^{x_0}\frac{F_{dA_1\rightarrow A_2}}{L_2} dx$$ obtains

$$F_{A_{1} \rightarrow A_{2}} = \frac{1}{2} \left[L_{2} \cos \theta_{T,surf} – \sqrt {\left(x_0 – h \cot \theta_{T,surf} \right)^2 + h^2} + \sqrt{ \left(x_{0} – h \cot \theta_{T,surf} – L_{2} \cos \theta_{T,surf} \right)^2 + \left(L_{2} \sin \theta_{T,surf}+ h \right)^2} \right] $$

When the full half plane is visible to the rear facing side of the array, $$x_{0} = h\cot \theta_{T,surf}$$ which reduces the above expression to

$$F_{A_1 \rightarrow A_2} = \frac{1}{2} \left(1 + \cos \theta_{L,surf} \right)$$

When $$A_2$$ is taken to be the front-facing surface and $$A_1$$ is the half-plane $$x\geq h \cot \theta_{T,surf}$$, the view factor $$F_{A_{1}\rightarrow A_2{2}}$$ is calculated in a similar manner to obtain

$$F_{A_{1}\rightarrow A_{2}} = \frac{1}{2}\left( 1 -\cos \theta_{T,surf} \right)$$