Perez Sky Diffuse Model

While the sky diffuse model presented up to this point separated the isotropic, circumsolar, and horizon components explicitly, Perez developed a more complex model that relies on a set of empirical coefficients for each term.

The basic form of the model is:

$$E_{d}=DHI\times \left[ \left( 1-F_{1} \right) \left( \frac{1+\cos \left ( \theta_{T} \right)}{2} \right) + F_1\left( \frac{a}{b} \right)+F_2 \sin \left (\theta_T \right) \right]$$,

where $$F_1$$ and $$F_2$$ are complex empirically fitted functions that describe circumsolar and horizon brightness, respectively.

$$a=\max \left (0, \cos \left(AOI\right)\right)$$, and $$b=\max \left (\cos\left( 85^{\circ} \right), \cos \left (\theta_Z\right)\right)$$.

$$F_1= \max \left[ 0,\left( f_{11}+f_{12} \Delta + \frac {\pi \theta_Z}{180^{\circ}}f_{13} \right) \right] $$,

$$F_2= f_{21}+f_{22}\Delta + \frac{\pi \theta_Z}{180^ {\circ}}f_{23}$$

The $$f$$ coefficients are defined for specific bins of clearness ($$\varepsilon$$), which is defined as:

$$\varepsilon = \frac{(DHI+DNI)/DHI +\kappa \theta_Z^3}{1+\kappa \theta_Z^3}$$,

where $$DNI$$ is direct normal irradiance and $$\kappa$$ is a constant equal to $$1.041$$ for angles are in radians, or  $$5.535\times 10^{-6}$$  for angles in degrees.

$$\Delta=\frac{DHI\times AM_{a}}{E_{a}}$$

where $$AM_a$$ is the absolute air mass, and $$E_a$$ is extraterrestrial radiation.

Perez has published a number of different versions of the $$f$$ coefficients fitted to various data sets [2, 3 , 4].  Table 1 shows the $$f$$ coefficient values published in [3] for irradiance.  The $$\varepsilon$$ bin refers to bins of clearness, $$\varepsilon$$, defined in Table 2.

Table 1. Perez model coefficients for irradiance (from Table 6 in [3])

 binf11f12f13f21f22f23
1-0.0080.588-0.062-0.060.072-0.022
20.130.683-0.151-0.0190.066-0.029
30.330.487-0.2210.055-0.064-0.026
40.5680.187-0.2950.109-0.152-0.014
50.873-0.392-0.3620.226-0.4620.001
61.132-1.237-0.4120.288-0.8230.056
71.06-1.6-0.3590.264-1.1270.131
80.678-0.327-0.250.156-1.3770.251

Table 2. Sky clearness bins (from Table 1 in [3])

 binLower BoundUpper Bound
1 Overcast11.065
21.0651.230
31.2301.500
41.5001.950
51.9502.800
62.8004.500
74.5006.200
8 Clear6.200

References

  • [1] Loutzenhiser P.G. et. al. “Empirical validation of models to compute  solar irradiance on inclined surfaces for building energy simulation”  2007, Solar Energy vol. 81. pp. 254-267
  • [2] Perez, R., Seals, R., Ineichen, P., Stewart, R., Menicucci, D., 1987. A new simplified version of the Perez diffuse irradiance model for tilted surfaces. Solar Energy 39 (3), 221–232.
  • [3] Perez, R., Ineichen, P., Seals, R., Michalsky, J., Stewart, R., 1990. Modeling daylight availability and irradiance components from direct and global irradiance. Solar Energy 44 (5), 271–289.
  • [4] Perez, R. et. al 1988. “The Development and Verification of the Perez Diffuse Radiation Model”. SAND88-7030